Lysine-Targeting Reversible Covalent Inhibitors with Long Residence Time.

J Am Chem Soc

Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States.

Published: January 2022

We report a new reversible lysine conjugation that features a novel diazaborine product and much slowed dissociation kinetics in comparison to the previously known iminoboronate chemistry. Incorporating the diazaborine-forming warhead RMR1 to a peptide ligand gives potent and long-acting reversible covalent inhibitors of the staphylococcal sortase. The efficacy of sortase inhibition is demonstrated via biochemical and cell-based assays. A comparative study of RMR1 and an iminoboronate-forming warhead highlights the significance and potential of modulating bond dissociation kinetics in achieving long-acting reversible covalent inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8928449PMC
http://dx.doi.org/10.1021/jacs.1c12702DOI Listing

Publication Analysis

Top Keywords

reversible covalent
12
covalent inhibitors
12
dissociation kinetics
8
long-acting reversible
8
lysine-targeting reversible
4
inhibitors long
4
long residence
4
residence time
4
time report
4
report reversible
4

Similar Publications

Insights into the Planarization of Benzo-Thianthrene Rings: Relevance of Electronic and Steric Effects with Resulting Aromatic Properties.

J Phys Chem A

January 2025

Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago 8420524, Chile.

Covalent-organic frameworks (COFs) are useful architectures for two- (2D) and three-dimensional (3D) active materials. Recently, the characterization of the nonplanar benzo[5,6][1,4]dithiino[2,3-]thianthrene-6,13-dicarbonitrile (bTEpCN), as a prototypical section of 2D COFs, enables further understanding of the properties on such extended networks. Upon adsorption on the Au(111) surface, planarization of bTEpCN is achieved.

View Article and Find Full Text PDF

Crystalline Covalent Triazine Frameworks and 2D Triazine Polymers: Synthesis and Applications.

Acc Chem Res

January 2025

School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.

ConspectusCovalent triazine frameworks (CTFs) are a novel class of nitrogen-rich conjugated porous organic materials constructed by robust and functional triazine linkages, which possess unique structures and excellent physicochemical properties. They have demonstrated broad application prospects in gas/molecular adsorption and separation, catalysis, energy conversion and storage, etc. In particular, crystalline CTFs with well-defined periodic molecular network structures and regular pore channels can maximize the utilization of the features of CTFs and promote a deep understanding of the structure-property relationship.

View Article and Find Full Text PDF

Anti-Mold Activities of Cationic Oligomeric Surfactants.

Langmuir

January 2025

CAS Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

Molds are persistent and harmful but receive far less research attention compared with pathogenic bacteria. With the increase in microbial resistance to single-chain surfactant antimicrobial agents, it is crucial to investigate how surfactant structures affect the antimicrobial activity of surfactants. Here, we have studied the antimold efficacy of a series of oligomeric cationic quaternary ammonium surfactants at varying oligomerization levels with or without dynamic covalent imine bonds.

View Article and Find Full Text PDF

Nanoscale photoswitchable proteins could facilitate precise spatiotemporal control of transmembrane communication and support studies in synthetic biology, neuroscience and bioelectronics. Here, through covalent modification of the α-haemolysin protein pore with arylazopyrazole photoswitches, we produced 'photopores' that transition between iontronic resistor and diode modes in response to irradiation at orthogonal wavelengths. In the diode mode, a low-leak OFF-state nanopore exhibits a reversible increase in unitary conductance of more than 20-fold upon irradiation at 365 nm.

View Article and Find Full Text PDF

A supramolecular assembly of a novel green fluorescent protein chromophore-based analogue and its application in fluorescence anti-counterfeiting.

J Mater Chem B

January 2025

The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Frontiers Science Research Base of Biomimetic Catalysis, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China.

Supramolecular fluorescent materials with switchable behavior and induced luminescence enhancement are a new class of special materials for constructing fluorescence anti-counterfeiting materials. Since these materials are constructed by self-assembly through supramolecular host-guest interactions of non-covalent bonds, such fluorescent materials can regulate their optical properties through a reversible assembly-disassembly process. Inspired by the role of the β-barrel scaffold in activating strong fluorescence of a green fluorescent protein (GFP) chromophore, we designed a supramolecular system based on a novel GFP analogue (CA) and cucurbit[7]uril (CB[7]).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!