Organic photovoltaics (OPV) is an emerging solar cell technology that offers vast advantages such as low-cost manufacturing, transparency, and solution processability. However, because the performance of OPV devices is still disappointing compared to their inorganic counterparts, better understanding of how controlling the molecular-level morphology can impact performance is needed. To this end, one has to overcome significant challenges that stem from the complexity and heterogeneity of the underlying electronic structure and molecular morphology. In this Letter, we address this challenge in the context of the DBP/C OPV system by employing a modular workflow that combines recent advances in electronic structure, molecular dynamics, and rate theory. We show how the wide range of interfacial pairs can be classified into four types of interfacial donor-acceptor geometries and find that the least populated interfacial geometry gives rise to the fastest charge transfer (CT) rates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.1c03618 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!