Environmental concerns have stimulated the development of green alternatives to environmentally pollutive nitramine compounds used for high-energy density materials (HEDMs). The excellent energetic properties of CL20 make it a promising candidate, but its negative oxygen balance limits its efficiency for industrial and military applications. We predict here that CL20-EO formed by introducing ether links into the CC bonds of the original CL20 structure to attain balanced CO and HO production leads to improved performance while minimizing the formation of carbonaceous clusters and toxic gases. To test this concept, we predicted the detonation properties at the Chapman-Jouguet (CJ) state using reactive molecular dynamics simulations with the ReaxFF force field combined with quantum mechanics based moleculear dynamics. We predict that CL20-EO enhances energetic performance compared to CL20 with a 6.0% increase in the CJ pressure and a 1.1% increase in the detonation velocity, which we attribute to achieving the correct oxygen balance to produce fully oxidized gaseous products. After expansion to normal conditions from the CJ state, CL20-EO leads only to nontoxic fully oxidized gases instead of forming the carbonaceous clusters and toxic gases found with CL-20. Thus, CL20-EO is predicted to be environmentally green. These results indicate that oxygen balance plays an important role in both energy availability and end-product toxicity and that balanced CO and HO production systems provide promising candidates for the next generation of environmentally acceptable alternatives to toxic HEDMs while also enhancing the detonation performance.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c20600DOI Listing

Publication Analysis

Top Keywords

oxygen balance
16
environmentally acceptable
8
high-energy density
8
density materials
8
molecular dynamics
8
dynamics simulations
8
predict cl20-eo
8
balanced production
8
carbonaceous clusters
8
clusters toxic
8

Similar Publications

Photodynamic therapy (PDT) and photothermal therapy (PTT) have emerged as promising treatment options, showcasing immense potential in addressing both oncologic and nononcologic diseases. Single-component organic phototherapeutic agents (SCOPAs) offer advantages compared to inorganic or multicomponent nanomedicine, including better biosafety, lower toxicity, simpler synthesis, and enhanced reproducibility. Nonetheless, how to further improve the therapeutic effectiveness of SCOPAs remains a challenging research area.

View Article and Find Full Text PDF

Doxorubicin (DOX) is a commonly used chemotherapeutic medication for treating malignancies, although its cardiotoxicity limits its use. There is growing evidence that alteration of the mitochondrial fission/fusion dynamic processes accompanied by excessive reactive oxygen species (ROS) production and alteration of calcium Ca homeostasis are potential underlying mechanisms of DOX-induced cardiotoxicity (DIC). Metformin (Met) is an AMP-activated protein kinase (AMPK) activator that has antioxidant properties and cardioprotective effects.

View Article and Find Full Text PDF

Background: Fluid management is a crucial critical care component, influencing outcomes such as organ function, renal integrity, and survival in critically ill patients. Recent evidence suggests that balanced crystalloids may offer advantages over isotonic saline, particularly in reducing the risk of acute kidney injury (AKI) and other complications. This study aimed to evaluate the impact of balanced crystalloids versus isotonic saline on clinical outcomes in the intensive care unit (ICU), focusing on AKI, renal replacement therapy (RRT), and mortality.

View Article and Find Full Text PDF

Globally, breast cancer continues to be the leading type of cancer affecting women, with rising mortality rates projected by 2030. This highlights the importance of developing new, affordable treatments, like drug delivery systems that use nanoparticles. Gold nanoparticles (AuNPs), including their exceptional optical and physical attributes, make them an attractive vehicle for targeted treatment, allowing for accurate and focused delivery of medication directly to cancerous cells while reducing harmful side effect.

View Article and Find Full Text PDF

Hydrology and water quality evaluation for potential HABs under future climate scenarios.

J Environ Manage

January 2025

Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS, 39762, United States. Electronic address:

Harmful algal blooms (HABs) are increasingly a global concern and the issue of all fifty states in the U.S as it poses a threat to human health and aquatic ecosystem. This study aimed to investigate the relationship of HABs with streamflow and water quality parameters and assess the hydrology-based potential future HABs in the Ohio River Basin at Ironton (ORBI) using the Soil and Water Assessment Tool (SWAT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!