Purpose: Digital Imaging and Communications in Medicine (DICOM), a standard file format for medical imaging data, contains metadata describing each file. However, metadata are often incomplete, and there is no standardized format for recording metadata, leading to inefficiency during the metadata-based data retrieval process. Here, we propose a novel standardization method for DICOM metadata termed the Radiology Common Data Model (R-CDM).

Materials And Methods: R-CDM was designed to be compatible with Health Level Seven International (HL7)/Fast Healthcare Interoperability Resources (FHIR) and linked with the Observational Medical Outcomes Partnership (OMOP)-CDM to achieve a seamless link between clinical data and medical imaging data. The terminology system was standardized using the RadLex playbook, a comprehensive lexicon of radiology. As a proof of concept, the R-CDM conversion process was conducted with 41.7 TB of data from the Ajou University Hospital. The R-CDM database visualizer was developed to visualize the main characteristics of the R-CDM database.

Results: Information from 2801360 cases and 87203226 DICOM files was organized into two tables constituting the R-CDM. Information on imaging device and image resolution was recorded with more than 99.9% accuracy. Furthermore, OMOP-CDM and R-CDM were linked to efficiently extract specific types of images from specific patient cohorts.

Conclusion: R-CDM standardizes the structure and terminology for recording medical imaging data to eliminate incomplete and unstandardized information. Successful standardization was achieved by the extract, transform, and load process and image classifier. We hope that the R-CDM will contribute to deep learning research in the medical imaging field by enabling the securement of large-scale medical imaging data from multinational institutions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8790584PMC
http://dx.doi.org/10.3349/ymj.2022.63.S74DOI Listing

Publication Analysis

Top Keywords

medical imaging
24
imaging data
20
data
10
r-cdm
9
radiology common
8
common data
8
data model
8
imaging
8
medical
7
development validation
4

Similar Publications

Towards a histological diagnosis of childhood small vessel CNS vasculitis.

Pediatr Rheumatol Online J

December 2024

Section of Rheumatology, Department of Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Canada.

Background: Primary small vessel CNS vasculitis (sv-cPACNS) is a challenging inflammatory brain disease in children. Brain biopsy is mandatory to confirm the diagnosis. This study aims to develop and validate a histological scoring tool for diagnosing small vessel CNS vasculitis.

View Article and Find Full Text PDF

Hormographiella aspergillata is a rare hyaline mold causing invasive fungal infection in humans, until the frequent use of antifungal prophylaxis in immunocompromised hosts. Due to the high mortality of H. aspergillata infection, early recognition and treatment are crucial.

View Article and Find Full Text PDF

Ultrasound-responsive nanoparticles for nitric oxide release to inhibit the growth of breast cancer.

Cancer Cell Int

December 2024

Department of Ultrasound, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China.

Gas therapy represents a promising strategy for cancer treatment, with nitric oxide (NO) therapy showing particular potential in tumor therapy. However, ensuring sufficient production of NO remains a significant challenge. Leveraging ultrasound-responsive nanoparticles to promote the release of NO is an emerging way to solve this challenge.

View Article and Find Full Text PDF

Multi-Energy Evaluation of Image Quality in Spectral CT Pulmonary Angiography Using Different Strength Deep Learning Spectral Reconstructions.

Acad Radiol

December 2024

Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL (M.H-S., H.S.S., A.G.R., S.E.M., J.C.P., E.Y.A., B.H., R.F.); Department of Radiology, University of Florida College of Medicine, Gainesville, FL (M.H-S., H.S.S., A.G.R., J.C.P., E.Y.A., B.H., R.F.); Division of Medical Physics, University of Florida College of Medicine, Gainesville, FL (R.F.); Department of Neurology, Division of Movement Disorders, University of Florida College of Medicine, Gainesville, FL (R.F.); Department of Otolaryngology - Head and Neck Surgery, McGill University, Montreal, Quebec, Canada (R.F.); Department of Radiology, AdventHealth Medical Group, Maitland, FL (R.F.). Electronic address:

Rationale And Objectives: To evaluate and compare image quality of different energy levels of virtual monochromatic images (VMIs) using standard versus strong deep learning spectral reconstruction (DLSR) on dual-energy CT pulmonary angiogram (DECT-PA).

Materials And Methods: A retrospective study was performed on 70 patients who underwent DECT-PA (15 PE present; 55 PE absent) scans. VMIs were reconstructed at different energy levels ranging from 35 to 200 keV using standard and strong levels with deep learning spectral reconstruction.

View Article and Find Full Text PDF

Early Lung Adenocarcinoma Manifesting as Irregular Subsolid Nodules: Clinical and CT Characteristics.

Acad Radiol

December 2024

Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China (P.-l.Z., T.-y.L., F.-j.L., Q.L.). Electronic address:

Rationale And Objectives: To explore the clinical and computed tomography (CT) characteristics of early-stage lung adenocarcinoma (LADC) that presents with an irregular shape.

Materials And Methods: The CT data of 575 patients with stage IA LADC and 295 with persistent inflammatory lesion (PIL) manifesting as subsolid nodules (SSNs) were analyzed retrospectively. Among these patients, we selected 233 patients with LADC and 140 patients with PIL, who showed irregular SSNs, hereinafter referred to as irregular LADC (I-LADC) and irregular PIL (I-PIL), respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!