AI Article Synopsis

  • Atherosclerotic cardiovascular diseases (CVD) are major global health threats, with monocyte-derived macrophages playing a critical role in their development, particularly through a process called trained immunity, which is triggered by oxidized low-density lipoproteins (oxLDL).
  • The study investigates how oxLDL influences internal processes in monocytes, revealing that exposure leads to changes in steroid hormone levels, specifically a decrease in progesterone after LPS stimulation.
  • Notably, progesterone uniquely reduces inflammation (like TNFα and IL-6 production) associated with trained immunity, and genetic factors related to steroid hormone receptors correlate with trained immunity responses, suggesting that progesterone may help explain the lower CVD rates seen in premenopausal women

Article Abstract

Atherosclerotic cardiovascular diseases (CVD) are among the leading causes of death in the world. Monocyte-derived macrophages are key players in the pathophysiology of atherosclerosis. Innate immune memory following exposure of monocytes to atherogenic compounds, such as oxidized low-density lipoproteins (oxLDL), termed trained immunity, can contribute to atherogenesis. The current study aimed to elucidate intracellular mechanisms of oxLDL-induced trained immunity. Using untargeted intracellular metabolomics in isolated human primary monocytes, we show that oxLDL-induced trained immunity results in alterations in the balance of intracellular steroid hormones in monocytes. This was reflected by a decrease in extracellular progesterone concentrations following LPS stimulation. To understand the potential effects of steroid hormones on trained immunity, monocytes were costimulated with oxLDL and the steroid hormones progesterone, hydrocortisone, dexamethasone, β-estradiol, and dihydrotestosterone. Progesterone showed a unique ability to attenuate the enhanced TNFα and IL-6 production following oxLDL-induced trained immunity. Single nucleotide polymorphisms in the nuclear glucocorticoid, progesterone, and mineralocorticoid receptor were shown to correlate with ex vivo oxLDL-induced trained immunity in 243 healthy volunteers. Pharmacologic inhibition experiments revealed that progesterone exerts the suppression of TNFα in trained immunity via the nuclear glucocorticoid and mineralocorticoid receptors. Our data show that progesterone has a unique ability to suppress oxLDL-induced trained immunity. We hypothesize that this effect might contribute to the lower incidence of CVD in premenopausal women.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9544104PMC
http://dx.doi.org/10.1002/JLB.3AB1220-846RDOI Listing

Publication Analysis

Top Keywords

trained immunity
36
oxldl-induced trained
24
steroid hormones
12
trained
9
immunity
9
immunity monocytes
8
progesterone unique
8
unique ability
8
nuclear glucocorticoid
8
progesterone
7

Similar Publications

Cardiovascular and cardiometabolic diseases are leading causes of morbidity and mortality worldwide, driven in part by chronic inflammation. Emerging research suggests that the bone marrow microenvironment, or marrow niche, plays a critical role in both immune system regulation and disease progression. The bone marrow niche is essential for maintaining hematopoietic stem cells (HSCs) and orchestrating hematopoiesis.

View Article and Find Full Text PDF

The Role of Dectin-1-Akt-RNF146 Pathway in β-Glucan Induced Immune Trained State of Monocyte in Sepsis.

J Inflamm Res

January 2025

Department of Anesthesiology, Zhongshan Hospital Fudan University, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, People's Republic of China.

Background: Sepsis is regarded as a dysregulated immune response to infections. Recent study showed partially reversal of immunosuppression by trained immunity, which fosters an enhanced immune response towards a secondary challenge. However, the role of trained immunity in sepsis has not been fully understood.

View Article and Find Full Text PDF

Advancing veterinary vaccines design through trained immunity insights.

Front Vet Sci

January 2025

College of Life Science, Longyan University, Longyan, China.

Trained immunity, characterized by long-term functional reprogramming of innate immune cells, offers promising new directions for veterinary vaccine development. This perspective examines how trained immunity can be integrated into veterinary vaccine design through metabolic reprogramming and epigenetic modifications. We analyze key molecular mechanisms, including the shift to aerobic glycolysis and sustained epigenetic changes, that enable enhanced immune responses.

View Article and Find Full Text PDF

Background: The BCG vaccine induces trained immunity, an epigenetic-mediated increase in innate immune responsiveness. Therefore, this clinical trial evaluated if BCG-induced trained immunity could decrease coronavirus disease 2019 (COVID-19)-related frequency or severity.

Methods: A double-blind, placebo-controlled clinical trial of healthcare workers randomized participants to vaccination with BCG TICE or placebo (saline).

View Article and Find Full Text PDF

Objective: Bacterial extracts have been used for many years to prevent airway infections. Recent findings suggest that immunity can be trained by inducing an immunological memory in both the innate and acquired immune response. This real-life observational study investigated the potential of sublingual bacterial immunotherapy in the prevention of ear, nose, and throat infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!