The clinical application of photothermal therapy (PTT) is severely limited by the tissue penetration depth of excitation light, and enzyme therapy is hampered by its low therapeutic efficiency. As a two-dimensional ultrathin nanosheet with high absorbance in the near-infrared-II (NIR-II) region, the titanium carbide (TiC) nanosheet can be used as a substrate to anchor functional components, like nanozymes and nanodrugs. Here, we decorate Pt artificial nanozymes on the TiC nanosheets to synthesize Ti-based MXene nanocomposites (TiCT-Pt-PEG). In the tumor microenvironment, the Pt nanoparticles exhibit peroxidase-like (POD-like) activity, which can catalyze hydrogen peroxide to generate hydroxyl radicals (OH) to induce cell apoptosis and necrosis. Meanwhile, the composite shows a desirable photothermal effect upon NIR-II light irradiation with a low power density (0.75 W cm). Especially, the POD-like activity is significantly enhanced by the elevated temperature arising from the photothermal effect of TiCT. Therefore, satisfactory synergistic PTT/enzyme therapy has been accomplished, accompanied by an applicable photoacoustic imaging capability to monitor and guide the therapeutic process. This work may provide an approach for hyperthermia-amplified nanozyme catalytic therapy, especially based on metal catalysts and MXene nanocomposites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.1c10732 | DOI Listing |
J Colloid Interface Sci
December 2024
School of Physics and Electronic Sciences, Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology, Changsha 410114, PR China. Electronic address:
Developing a catalytic nanoenzyme activated by the tumor microenvironment (TME) shows excellent potential for in situ cancer treatment. However, the rational design of a cascade procedure to achieve high therapeutic efficiency remains challenging. In this study, the colorectal TME-responsive multifunctional cascade nanoenzyme CuO@MnO@glucose oxidase (GOx)@hyaluronic acid (HA) was developed to target in situ cancer starvation/chemodynamic therapy (CDT)/photothermal therapy (PTT).
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Basic Medicine, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan 750004, China. Electronic address:
Targeting the peculiarities of tumor tissue microenvironment different from normal tissue, such as lower pH and overexpression of hydrogen peroxide is the key to effective treatment. In this study, acid-responsive Z-scheme heterojunctions polyglycolated MoS/CoFeO (MoS = molybdenum disulfide, CoFeO = cobalt ferrite) was synthesized using a two-step hydrothermal method, designated as MSCO-PEG, guided by dual modes of photoacoustic imagine (PAI) and nuclear magnetic imaging (MRI). MSCO-PEG (PEG = polyethylene glycol) responded to the acidic environment of tumor tissues and overexpression of hydrogen peroxide to turn on multimodal synergistic treatment of tumor cells under near-infrared-II (NIR-II) illumination.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Extreme Photonics and Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China.
Multichannel imaging in the second near-infrared (NIR-II) window offers vital and comprehensive information for complex surgical environments, yet a simple, high-quality, video-rate multichannel imaging method with low safety risk remains to be proposed. Centered at the superior NIR-IIx window of 1400-1500 nm, triple-channel imaging coordinated with 1000-1100 and 1700-1880 nm (NIR-IIc) achieves exceptional clarity and an impressive signal-to-crosstalk ratio as high as 22.10.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
Fluorescence thermometry based on metal halide perovskites is increasingly becoming a hotspot due to its advantages of high detection sensitivity, noninvasiveness, and fast response time. However, it still presents certain technical challenges in practical applications, such as complex synthesis methods, the use of toxic solvents, and being currently mainly based on the visible/first near-infrared light with poor penetration and severe autofluorescence. In this study, we synthesize the second near-infrared (NIR-II) luminescent crystals based on Yb/Nd-doped zero-dimensional CsScCl·HO by a simple "dissolve-dry" method.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 1, Singapore, 117585, Singapore.
Strong background interference signals from normal tissues have significantly compromised the sensitive fluorescence imaging of early disease tissues with exogenous probes in vivo, particularly for sensitive fluorescence imaging of early liver disease due to the liver's significant uptake and accumulation of exogenous nanoprobes, coupled with high tissue autofluorescence and deep tissue depth. As a proof-of-concept study, we herein report a near-infrared-II (NIR-II, 1.0-1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!