AI Article Synopsis

  • Identification of 65 and 49 Meta-QTLs related to salinity tolerance at the seedling and reproductive stages was performed using data from 45 QTL mapping studies, involving 915 individual QTLs.
  • Eight highly tolerant and susceptible genotypes were selected from a hydroponic setup to validate these Meta-QTLs, but only one microsatellite marker, "RM5635," successfully differentiated genotypes for seedling tolerance.
  • The study also highlighted Os04g0423100 as a key gene linked to salinity tolerance traits, suggesting that the findings could be valuable for improving rice through marker-assisted backcross breeding.

Article Abstract

Identification of concurrent genomic regions contributing tolerance to salinity at the seedling and reproductive stages were done using 45 quantitative trait loci (QTL) mapping studies reporting 915 individual QTLs. The QTL-data were used to perform a meta-analysis to predict, validate and analyze the Meta-QTLs governing component traits contributing to salinity tolerance. We predicted a total of 65 and 49 Meta-QTLs distributed across the genome governing seedling and reproductive stage salinity tolerance, respectively. Salinity stress (EC ~10.0 dSm ) was evaluated in a set of 32 genotypes grown hydroponically, from these eight extreme (highly tolerant and highly susceptible) genotypes were selected for validation of significant Meta-QTLs. Another set of eight previously known and reported (highly tolerant and highly susceptible) genotypes were evaluated under saline micro plot conditions (EC ~8.0 dSm ) and used for validation of significant Meta-QTLs for reproductive stage salinity tolerance. The microsatellite marker "RM5635" linked to MSQTL4.2 (~295.43 kb) was able to clearly differentiate contrasting genotypes for seedling stage salinity tolerance, whereas at the reproductive stage, none of the markers were able to validate the predicted Meta-QTL for salinity tolerance. Earlier reported, gene expression studies were used for candidate gene analysis of validated MSQTL4.2, which indicated the down regulation of Os04g0423100, a gene encoding Mono-oxygenase-FAD binding domain containing protein. The traits associated with this Meta-QTL were root and shoot sodium and potassium concentration and leaf chlorophyll content. The identified and validated genomic region assumes a great significant role in seedling stage salinity tolerance in rice, and it can be used for marker-assisted backcross breeding programs.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ppl.13629DOI Listing

Publication Analysis

Top Keywords

salinity tolerance
28
stage salinity
20
reproductive stage
16
seedling reproductive
12
salinity
9
governing seedling
8
tolerance
8
tolerance rice
8
tolerance salinity
8
highly tolerant
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!