Zinc (Zn) is a vital nutrient element required for plants normal growth and development. It performs imperative functions in numerous metabolic pathways in the plants. However, potentially noxious levels of Zn in terrestrial environment can lead to inhibited photosynthesis, growth, respiratory rate and imbalanced mineral nutrition. In micronutrient malnutrition, Zn deficiency is a global human health problem owing to the human dependence on cereals grains especially wheat-based diet. Therefore, this study investigated the Zn uptake efficacy in Triticum aestivum that is grown under two different doses (100 g/kg or 200 g/kg) of various soil amendments in both pot and field experimentation. Results of this study revealed that mean Zn concentration in different wheat varieties and treatments were varied from 1.53 to 6.03 mg/kg, 11.27 to 40.65 mg/kg, 11.28 to 39.93 mg/kg, and 11.32 to 37.70 mg/kg in amended soil, root, shoot, and grains, respectively. All observed Zn values in soil and wheat parts were lower than the FAO/WHO standards. Zinc values observed for pollution load index (0.034-0.134 mg/kg), daily intake (0.00492-0.01533 mg/kg), and health risk (0.0164-0.0570 mg/kg) index were lower than 1 except bio-concentration factor. Bio-concentration factor (5.076-10.165 mg/kg) revealed that DHARABI-11 variety showed maximum Zn uptake efficacy in farmyard manure treatment. The daily intake and health risk index values also showed that Zn level in grains is safe for inhabitants consumption. Overall, study recommended that these organic amendments are a good source of fertilizers, essentially required for the sustainable management of soil and increases the Zn accumulation in wheat grains which can ultimately reduce the Zn malnutrition in human food chain.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-18130-wDOI Listing

Publication Analysis

Top Keywords

daily intake
12
health risk
12
intake health
8
pollution load
8
triticum aestivum
8
aestivum grown
8
uptake efficacy
8
bio-concentration factor
8
soil
5
appraising growth
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!