Binding behavior of spike protein and receptor binding domain of the SARS-CoV-2 virus at different environmental conditions.

Sci Rep

Department of Biological and Agricultural Engineering, Texas A&M University, 2117 TAMU, College Station, TX, 77843, USA.

Published: January 2022

A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified as the cause of the COVID-19 pandemic that originated in China in December 2019. Although extensive research has been performed on SARS-CoV-2, the binding behavior of spike (S) protein and receptor binding domain (RBD) of SARS-CoV-2 at different environmental conditions have yet to be studied. The objective of this study is to investigate the effect of temperature, fatty acids, ions, and protein concentration on the binding behavior and rates of association and dissociation between the S protein and RBD of SARS-CoV-2 and the hydrophobic aminopropylsilane (APS) biosensors using biolayer interferometry (BLI) validated with molecular dynamics simulation. Our results suggest three conditions-high ionic concentration, presence of hydrophobic fatty acids, and low temperature-favor the attachment of S protein and RBD to hydrophobic surfaces. Increasing the temperature within an hour from 0 to 25 °C results in S protein detachment, suggesting that freezing can cause structural changes in the S protein, affecting its binding kinetics at higher temperature. At all the conditions, RBD exhibits lower dissociation capabilities than the full-length S trimer protein, indicating that the separated RBD formed stronger attachment to hydrophobic surfaces compared to when it was included in the S protein.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8763896PMC
http://dx.doi.org/10.1038/s41598-021-04673-yDOI Listing

Publication Analysis

Top Keywords

binding behavior
12
protein
9
behavior spike
8
spike protein
8
protein receptor
8
receptor binding
8
binding domain
8
environmental conditions
8
rbd sars-cov-2
8
fatty acids
8

Similar Publications

Structure-based interaction study of Samaderine E and Bismurrayaquinone A phytochemicals as potential inhibitors of KRas oncoprotein.

SAR QSAR Environ Res

January 2025

Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia.

Ras is identified as a human oncogene which is frequently mutated in human cancers. Among its three isoforms (K, N, and H), KRas is the most frequently mutated. Mutant Ras exhibits reduced GTPase activity, leading to the prolonged activation of its conformation.

View Article and Find Full Text PDF

High-Density Lipoprotein Lipid and Protein Cargo and Cholesterol Efflux Capacity Before and After Bariatric Surgery.

Arterioscler Thromb Vasc Biol

January 2025

Department of Medicine, Leon H. Charney Division of Cardiology (S.Z., B.-X.L., A.C., M.F., E.A.F., S.P.H.).

Background: Cholesterol efflux capacity (CEC) of HDL (high-density lipoprotein) is inversely associated with incident cardiovascular events, independent of HDL cholesterol. Obesity is characterized by low HDL cholesterol and impaired HDL function, such as CEC. Bariatric surgery, including Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG), broadly leads to improved cardiovascular outcomes, but impacts on risk factors differ by procedure, with greater improvements in weight loss, blood pressure, and glycemic control after RYGB, but greater improvements in HDL cholesterol and CEC levels after SG.

View Article and Find Full Text PDF

The applications of nanomaterials in regenerative medicine encompass a broad spectrum. The functional nanomaterials, such as Prussian blue and its derivative nanoparticles, exhibit potent anti-inflammatory and antioxidant properties. By combining it with the corresponding scaffold carrier, the fusion of nanomaterials and biotherapy can be achieved, thereby providing a potential avenue for clinical treatment.

View Article and Find Full Text PDF

[Genetic Mutation Profile and Risk Stratification of Cytogenetically Normal Acute Myeloid Leukemia with Mutations Based on Multi-Gene Sequencing].

Zhongguo Shi Yan Xue Ye Xue Za Zhi

December 2024

Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University,Beijing 100044, China.

Objective: To evaluate the gene mutation profile and prognostic significance of adult cytogenetically normal acute myeloid leukemia (CN-AML) with mutation.

Methods: Targeted sequencing was implemented on the diagnostic bone marrow DNA samples of 141 adult CN-AML subjects with mutation. The nomogram model for leukemia-free survival (LFS) rate was generated by combining genetic abnormalities and clinical data.

View Article and Find Full Text PDF

Integrin αvβ3, a primary cell-adhesion receptor, plays a crucial role in various biological processes, including angiogenesis, pathological neovascularization, and tumor metastasis. Its expression increases during tumor angiogenesis. The insulin-like growth factor 1 receptor (IGF1R) is a transmembrane protein that stimulates vital signaling pathways, promoting cancer cell growth, survival, and metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!