It is critical to understand how human modifications of Earth's ecosystems are influencing ecosystem functioning, including net and gross community production (NCP and GCP, respectively) and community respiration (CR). These responses are often estimated by measuring oxygen production in the light (NCP) and consumption in the dark (CR), which can then be combined to estimate GCP. However, the method used to create "dark" conditions-either experimental darkening during the day or taking measurements at night-could result in different estimates of respiration and production, potentially affecting our ability to make integrative predictions. We tested this possibility by measuring oxygen concentrations under daytime ambient light conditions, in darkened tide pools during the day, and during nighttime low tides. We made measurements every 1-3 months over one year in southeastern Alaska. Daytime respiration rates were substantially higher than those measured at night, associated with higher temperature and oxygen levels during the day and leading to major differences in estimates of GCP calculated using daytime versus nighttime measurements. Our results highlight the potential importance of measuring respiration rates during both day and night to account for effects of temperature and oxygen-especially in shallow-water, constrained systems-with implications for understanding the impacts of global change on ecosystem metabolism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8763951 | PMC |
http://dx.doi.org/10.1038/s41598-021-04685-8 | DOI Listing |
Sci One Health
November 2024
CR University Grenoble Alpes, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Grenoble, France.
Most biomedical research on animals is based on the handful of the so-called standard model organisms, i.e. laboratory mice, rats or , but the keys to some important biomedical questions may simply not be found in these.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2025
Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 180 00, Czechia.
This work investigates the surface chemistry of the Ru/CeO catalyst under varying pretreatment conditions and during the oxidation of propane, focusing on both dry and humid environments. Our results show that the Ru/CeO catalyst calcined in O at 500 °C initiates propane oxidation at 200 °C, achieves high conversion rates above 400 °C, and demonstrates almost no change in activity in the presence of water vapor across the entire studied temperature range of 200-500 °C. Prereduction of the oxidized Ru/CeO catalyst in H significantly enhances its activity, though this enhancement diminishes at higher temperatures.
View Article and Find Full Text PDFJ Med Life
December 2024
Department of Basic Sciences, College of Science and Health Professions (COSHP), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah, Saudi Arabia.
The risk of cardiovascular disease differs among various ethnic groups, highlighting disparities in cardiovascular health among different populations. While multiple studies from other countries have looked at changes in physiological parameters during autonomic function tests like isometric handgrip and cold pressor tests, no correlational research has been done in Saudi Arabia. This lacuna underscores the importance of examining the relationship between cardiorespiratory parameters in young Saudi Arabian individuals during these tests.
View Article and Find Full Text PDFMater Horiz
January 2025
State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
Solar energy sources have garnered significant attention as a renewable energy option. Despite this, the practical power conversion efficiency (PCE) of widely used silicon-based solar cells remains low due to inefficient light utilization. In this study, carbon dots (APCDs) were prepared a hydrothermal method using ammonium polyphosphate and -phenylenediamine, then incorporated into a silicone-acrylic emulsion (CAS) to create a luminescent down-shifting (LDS) layer for solar cells.
View Article and Find Full Text PDFJ Plant Physiol
January 2025
Department of Ecology, Faculty of Sciences, University of Málaga, Málaga, Spain.
Cold-temperate and Arctic hard bottom coastal ecosystems are dominated by kelp forests, which have a high biomass production and provide important ecosystem services, but are subject to change due to ocean warming. However, the photophysiological response to increasing temperature of ecologically relevant species, such as Laminaria digitata, might depend on the local thermal environment where the population has developed. Therefore, the effects of temperature on growth rate, biochemical composition, maximum quantum yield, photosynthetic quotient and carbon budget of young cultured sporophytes of Laminaria digitata from the Arctic at Spitsbergen (SPT; cultured at 4, 10 and 16 °C) and from the cold-temperate North Sea island of Helgoland (HLG; cultured at 10, 16 and 22 °C) were comparatively analyzed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!