AI Article Synopsis

  • The study focused on developing two new prognostic models based on gene expression data related to ferroptosis and necroptosis to predict outcomes for advanced ovarian cancer patients resistant to platinum treatment.
  • Researchers identified differentially expressed genes from the GSE32062 cohort, constructed the models, and validated them using additional cohorts (GSE26712 and GSE17260), assessing survival data and gene expression signatures.
  • Results showed that both models indicated differences in immune-related factors between high- and low-risk patients, with the ferroptosis model proving consistent across cohorts, while the necroptosis model's performance varied, highlighting the need for further investigation into gene signatures and clinical factors.

Article Abstract

Background: Platinum-resistant cases account for 25% of ovarian cancer patients. Our aim was to construct two novel prognostic models based on gene expression data respectively from ferroptosis and necroptosis, for predicting the prognosis of advanced ovarian cancer patients with platinum treatment.

Methods: According to the different overall survivals, we screened differentially expressed genes (DEGs) from 85 ferroptosis-related and 159 necroptosis-related gene expression data in the GSE32062 cohort, to establish two ovarian cancer prognostic models based on calculating risk factors of DEGs, and log-rank test was used for statistical significance test of survival data. Subsequently, we validated the two models in the GSE26712 cohort and the GSE17260 cohort. In addition, we took gene enrichment and microenvironment analyses respectively using limma package and GSVA software to compare the differences between high- and low-risk ovarian cancer patients.

Results: We constructed two ovarian cancer prognostic models: a ferroptosis-related model based on eight-gene expression signature and a necroptosis-related model based on ten-gene expression signature. The two models performed well in the GSE26712 cohort, but the performance of necroptosis-related model was not well in the GSE17260 cohort. Gene enrichment and microenvironment analyses indicated that the main differences between high- and low- risk ovarian cancer patients occurred in the immune-related indexes, including the specific immune cells abundance and overall immune indexes.

Conclusion: In this study, ovarian cancer prognostic models based on ferroptosis and necroptosis have been preliminarily validated in predicting prognosis of advanced patients treated with platinum drugs. And the risk score calculated by these two models reflected immune microenvironment. Future work is needed to find out other gene signatures and clinical characteristics to affect the accuracy and applicability of the two ovarian cancer prognostic models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8764839PMC
http://dx.doi.org/10.1186/s12885-021-09166-9DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
36
prognostic models
24
cancer prognostic
16
ferroptosis necroptosis
12
cancer patients
12
models based
12
models
9
ovarian
9
cancer
9
novel prognostic
8

Similar Publications

Purpose: To assess trial-level surrogacy value for overall survival (OS) of the pathologic complete response (pCR) and invasive disease-free survival (iDFS) in randomized clinical trials (RCTs) for early breast cancer (BC).

Methods: Individual patient data of neoadjuvant RCTs with available data on pCR, iDFS, and OS were included in the analysis. We used the coefficient of determination from weighted linear regression models to quantify the association between treatment effects on OS and on the surrogate end points.

View Article and Find Full Text PDF

Background: There is indication that the fallopian tubes might be involved in ovarian cancer pathogenesis and their removal reduces cancer risk. Hence, bilateral salpingectomy during hysterectomy or sterilization, so called opportunistic salpingectomy (OS), is gaining wide acceptance as a preventive strategy. Recently, it was discussed whether implementation of OS at other gynecologic surgery, e.

View Article and Find Full Text PDF

In this study, spatial and single-cell transcriptome techniques were used to investigate the role of beta-galactoside alpha-2,6-sialyltransferase 1 (ST6GAL1) in promoting peritoneal metastasis in ovarian cancer epithelial cells. We collected single-cell transcriptomic (GSE130000) and spatial transcriptomic datasets (GSE211956) from the Gene Expression Omnibus and RNA-sequencing data from The Cancer Genome Atlas. The Robust Cell Type Decomposition (RCTD) approach was implemented to integrate spatial and single-cell transcriptomic data.

View Article and Find Full Text PDF

Background: Ovarian cancer (OC) represents a common neoplasm within the female reproductive tract. The prognosis for patients diagnosed at advanced stages is unfavorable, primarily attributable to the absence of reliable screening markers for early detection. An elevated neutrophil-to-lymphocyte ratio (NLR) serves as an indicator of host inflammatory response and has been linked to poorer overall survival (OS) across various cancer types; however, its examination in OC remains limited.

View Article and Find Full Text PDF

Predicting Survival Outcomes for Patients with Ovarian Cancer Using National Cancer Registry Data from Taiwan: A Retrospective Cohort Study.

Womens Health Rep (New Rochelle)

January 2025

Institute of Epidemiology and Preventive Medicine, Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.

Background: Ovarian cancer is one of the top seven causes of cancer deaths. Incidence of ovarian cancer varies by ethnicity, where Asian women demonstrate lower incidence rates than non-Hispanic Blacks and Whites. Survival prediction models for ovarian cancer have been developed for Caucasians and Black populations using national databases; however, whether these models work for Asians is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!