AI Article Synopsis

  • Phosphoinositide lipids are crucial for various cellular processes, but their function in the malaria parasite Plasmodium falciparum is not well understood.
  • An experiment targeting 24 genes related to phosphoinositide metabolism revealed that 79% of these genes are essential for parasite growth, with one specific gene, PfPX1, being vital for hemoglobin trafficking and influencing drug resistance to artemisinin.
  • This research highlights the potential of targeting phosphoinositide pathways in developing new antimalarial drugs, addressing the urgent need for effective treatments due to malaria's significant global health impact.

Article Abstract

Phosphoinositide lipids play key roles in a variety of processes in eukaryotic cells, but our understanding of their functions in the malaria parasite Plasmodium falciparum is still very much limited. To gain a deeper comprehension of the roles of phosphoinositides in this important pathogen, we attempted gene inactivation for 24 putative effectors of phosphoinositide metabolism. Our results reveal that 79% of the candidates are refractory to genetic deletion and are therefore potentially essential for parasite growth. Inactivation of the gene coding for a -specific putative phosphoinositide-binding protein, which we named PfPX1, results in a severe growth defect. We show that PfPX1 likely binds phosphatidylinositol-3-phosphate and that it localizes to the membrane of the digestive vacuole of the parasite and to vesicles filled with host cell cytosol and labeled with endocytic markers. Critically, we provide evidence that it is important in the trafficking pathway of hemoglobin from the host erythrocyte to the digestive vacuole. Finally, inactivation of PfPX1 renders parasites resistant to artemisinin, the frontline antimalarial drug. Globally, the minimal redundancy in the putative phosphoinositide proteins uncovered in our work supports that targeting this pathway has potential for antimalarial drug development. Moreover, our identification of a phosphoinositide-binding protein critical for the trafficking of hemoglobin provides key insight into this essential process. Malaria represents an enormous burden for a significant proportion of humanity, and the lack of vaccines and problems with drug resistance to all antimalarials demonstrate the need to develop new therapeutics. Inhibitors of phosphoinositide metabolism are currently being developed as antimalarials but our understanding of this biological pathway is incomplete. The malaria parasite lives inside human red blood cells where it imports hemoglobin to cover some of its nutritional needs. In this work, we have identified a phosphoinositide-binding protein that is important for the transport of hemoglobin in the parasite. Inactivation of this protein decreases the ability of the parasite to proliferate. Our results have therefore identified a potential new target for antimalarial development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8764524PMC
http://dx.doi.org/10.1128/mbio.03239-21DOI Listing

Publication Analysis

Top Keywords

phosphoinositide-binding protein
16
malaria parasite
12
trafficking pathway
8
pathway hemoglobin
8
parasite plasmodium
8
plasmodium falciparum
8
phosphoinositide metabolism
8
digestive vacuole
8
antimalarial drug
8
parasite
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!