Thermochromic Cholesteric Liquid Crystal Microcapsules with Cellulose Nanocrystals and a Melamine Resin Hybrid Shell.

ACS Appl Mater Interfaces

SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China.

Published: January 2022

Thermochromic coatings that can change their color in response to variations in ambient temperature have various potential applications. Cholesteric liquid crystals (CLCs) are promising thermochromic materials due to their selective light reflection and wide regulation range. However, it remains a challenge to fabricate thermochromic coatings that combine good responsivity, mechanical strength, fabrication feasibility, and flexibility. In this study, CLC microcapsules containing cellulose nanocrystals (CNCs) and a melamine-formaldehyde (MF) resin hybrid shell were fabricated via in situ polymerization using CNC-stabilized Pickering emulsions as templates. The CNCs were employed as both Pickering emulsifiers and alignment agents of CLCs to prepare CLC Pickering emulsions. The CLC microcapsules were mixed with curable binders to obtain coating slurries, and thermochromic coatings were prepared by painting the slurries on substrates and drying. The thermochromic coatings could adjust their color in the visible wavelength range in a temperature range of 12 to 42 °C. Moreover, the obtained thermochromic coatings displayed a relatively high reflectance of up to 30-40% and can even be applied to flexible substrates. The CLC microcapsules with CNCs and an MF hybrid shell are promising in the field of smart decorative paints, anti-counterfeit labels, and artificial skins.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c23101DOI Listing

Publication Analysis

Top Keywords

thermochromic coatings
20
hybrid shell
12
clc microcapsules
12
cholesteric liquid
8
microcapsules cellulose
8
cellulose nanocrystals
8
resin hybrid
8
pickering emulsions
8
thermochromic
7
coatings
5

Similar Publications

A thermochromic pigment, derived from reaction of ethylenediamine and rhodamine B known as MA-RB, has been successfully developed. This pigment showcases temperature-controlled visible color-transformation properties in both solid and solution states. The thermochromic pigment MA-RB exhibits a notable color change from light pink to rose red, triggered by thermal excitation.

View Article and Find Full Text PDF

The Ag NWs/TCMs/WPU/PET fabric was prepared by coating the polyester (PET) fabric with Ag NWs/TCMs/WPU paint. First, an electrothermochromic paint was fabricated by incorporating waterborne polyurethane (WPU) and thermochromic microcapsules (TCMs) into silver nanowire (Ag NW) dispersions, and then the Ag NWs/TCMs/WPU paint was applied to polyester (PET) fabrics via brushing, thereby integrating electrothermal and color-changing properties into a single functional layer. The color change test and DSC data demonstrate that the Ag NWs/TCMs/WPU paint exhibits a reversible color change effect, and the flexibility test data indicate that the coating's resistance remains essentially unchanged after 1000 bending cycles.

View Article and Find Full Text PDF

Fly ash (FA) is the main solid waste emitted from coal-fired power plants. Due to its high yield, low utilization rate, and occupation of a large amount of land, it exerts enormous pressure on the Earth's environment. With the deepening of the concept of sustainable development, exploring the reuse of industrial waste such as FA has become a key strategy.

View Article and Find Full Text PDF

Self-Adaptive Smart Thermochromic Film with Quick Response for All-Year Radiative Cooling and Solar Heating.

ACS Appl Mater Interfaces

December 2024

National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China.

The advancement of energy-saving buildings requires both high-performance passive radiative cooling (PRC) and solar absorption heating (SAH) materials. Although many materials with PRC or SAH functions have been developed, they cannot adapt to the large fluctuations of ambient temperature in different seasons. Herein, we report the design and fabrication of a new thermochromic porous film (TMRC) with combined temperature-adaptive SAH and PRC performance to achieve "warm in winter and cool in summer" for all-year radiative cooling and solar heating.

View Article and Find Full Text PDF

Structurally coloured responsive materials provide an interesting avenue for the development of autonomous temperature regulating window films. One interesting class of such thermochromic materials is cholesteric liquid crystals. However, cholesteric liquid crystals have rarely been applied in coatings for smart window applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!