A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Privacy-Preserving Distributed Analytics Platform for Health Care Data. | LitMetric

A Privacy-Preserving Distributed Analytics Platform for Health Care Data.

Methods Inf Med

Department of Data Science and Artificial Intelligence, Fraunhofer FIT, Sankt Augustin, Germany.

Published: June 2022

Background: In recent years, data-driven medicine has gained increasing importance in terms of diagnosis, treatment, and research due to the exponential growth of health care data. However, data protection regulations prohibit data centralisation for analysis purposes because of potential privacy risks like the accidental disclosure of data to third parties. Therefore, alternative data usage policies, which comply with present privacy guidelines, are of particular interest.

Objective: We aim to enable analyses on sensitive patient data by simultaneously complying with local data protection regulations using an approach called the Personal Health Train (PHT), which is a paradigm that utilises distributed analytics (DA) methods. The main principle of the PHT is that the analytical task is brought to the data provider and the data instances remain in their original location.

Methods: In this work, we present our implementation of the PHT paradigm, which preserves the sovereignty and autonomy of the data providers and operates with a limited number of communication channels. We further conduct a DA use case on data stored in three different and distributed data providers.

Results: We show that our infrastructure enables the training of data models based on distributed data sources.

Conclusion: Our work presents the capabilities of DA infrastructures in the health care sector, which lower the regulatory obstacles of sharing patient data. We further demonstrate its ability to fuel medical science by making distributed data sets available for scientists or health care practitioners.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9246511PMC
http://dx.doi.org/10.1055/s-0041-1740564DOI Listing

Publication Analysis

Top Keywords

data
17
health care
16
distributed data
12
distributed analytics
8
care data
8
data protection
8
protection regulations
8
patient data
8
pht paradigm
8
health
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!