Proton magnetic resonance spectroscopy (H MRS) may provide information on pathophysiological changes associated with tau deposition in cognitively unimpaired older adults. In this study, the associations of posterior cingulate gyrus tau and amyloid beta (Aβ) deposition on PET with H MRS metabolite ratios acquired from bilateral posterior cingulate gyri were investigated in cognitively unimpaired older adults. Participants (n = 40) from the Mayo Clinic Study of Aging underwent single-voxel sLASER H MRS from the posterior cingulate gyrus at 3 Tesla, F-flortaucipir, and C- Pittsburgh Compound B (PiB) PET. An increase in posterior cingulate gyrus tau deposition, but not elevated Aβ, was associated with lower N-acetylaspartate/total creatine (tCr) and glutamate (Glu)/tCr ratios, and sex by tau interaction was observed in association with Glu/tCr. Higher tau levels in cognitively unimpaired older adults are associated with biomarkers of neural and synaptic injury even in the absence of cognitive impairment and these relationships appear to be stronger in women than in men.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8976711PMC
http://dx.doi.org/10.1016/j.neurobiolaging.2021.12.010DOI Listing

Publication Analysis

Top Keywords

cognitively unimpaired
16
unimpaired older
16
older adults
16
posterior cingulate
16
tau deposition
12
cingulate gyrus
12
associated tau
8
deposition cognitively
8
gyrus tau
8
tau
6

Similar Publications

Background: Numerous studies have highlighted the role of oxidative stress in Alzheimer's disease (AD) development. Yet, the alignment of systemic and central oxidative stress biomarkers is unclear across diverse populations in the AD continuum. This study aims to assess protein damage levels in plasma and cerebrospinal fluid (CSF) within the AD continuum.

View Article and Find Full Text PDF

Background: As humans age, some experience cognitive impairment while others do not. When impairment occurs, it varies in severity across individuals. Translationally relevant models are critical for understanding the neurobiological drivers of this variability, which is essential to uncovering the mechanisms underlying the brain's susceptibility to aging.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is sometimes characterized as "type 3 diabetes" because hyperglycemia impairs cognitive function, particularly in the medial temporal lobe (MTL) and prefrontal regions. Further, both AD and type 2 diabetes (T2D) disproportionately impact African Americans. Although people with T2D are generally suggested to have lower episodic memory and executive function, limited data exist in older African Americans.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.

Background: Vascular dysfunction, blood-brain barrier (BBB) dysregulation, and neuroinflammation are thought to participate in Alzheimer`s disease (AD) pathogenesis, though the mechanism is poorly understood. Among pathways of interest, AD pathology appears to affect vascular endothelial growth factor-A (VEGFA) signaling in a bidirectional manner. Higher VEGF levels are thought to have a protective role and slow cognitive decline.

View Article and Find Full Text PDF

Background: The extracellular amyloid plaques, one of the pathological hallmarks of Alzheimers Disease (AD), are frequently also observed in the cortex of cognitively unimpaired subjects or as co-pathology in other neurodegenerative diseases. Progressive deposition of fibrillar amyloid-β (Aβ) as amyloid plaques for two decades prior disease onset leads to extensive isomerization of Aβ N-terminus. Quantifying the extent of isomerized Aβ can be provide insight into the different stages of amyloidosis in the brain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!