Effects of age-related tympanic-membrane material properties on sound transmission in the middle ear in a three-dimensional finite-element model.

Comput Methods Programs Biomed

The Ph.D. Program for Medical Engineering and Rehabilitation Science, College of Biomedical Engineering, China Medical University, Taichung 406040, Taiwan; Department of Biomedical Imaging and Radiological Science, College of Medicine, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung 406040, Taiwan. Electronic address:

Published: March 2022

Background And Objectives: The Young's modulus of the tympanic membrane (TM) is an important modeling parameter in computer simulations of the sound transmission in the ear. Understanding the material mechanics of the TM is essential to improve the coupling between the tympanic membrane and the auditory ossicles. However, the impact of the age-related Young's modulus of the TM on sound transmission is not well known. The objective of this study was to use a comprehensive finite element (FE) model to assess the impact of Young's modulus on sound transmission from the ear canal to the stapes footplate over acoustic frequencies.

Methods: The FE model of the ear canal, the middle ear, and the inner ear, was constructed. The model was constructed with identical geometries and boundary conditions, but with three different Young's moduli for the TMs. The auditory ossicles, suspensory ligaments and tendons, and manubrium were also modeled as isotropic elastic materials. Beside, we evaluated the age-related Young's moduli of the TMs on sound transmission with the FE element fluid-structural interaction (FSI) model under acoustic loading conditions.

Results: The impact of the age-related Young's moduli on the sound pressure distributions in the ear canal was significant over two frequency ranges of 1.4-3.2 and 8.6-10 kHz. Meanwhile, the significant differences of the displacement of the stapes occurred at around 1.6 kHz, where the displacement of the stapes decreased from 0.352 nm to 0.287 nm.

Conclusions: The FSI model could demonstrate the influence of Young's modulus of the TM on the transfer of sound-induced vibrations form the ear canal to the stapes footplate. The FE model may provide appropriate information to the medical device development of artificial ossicles and hearing aids.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2022.106619DOI Listing

Publication Analysis

Top Keywords

sound transmission
20
young's modulus
16
ear canal
16
age-related young's
12
young's moduli
12
ear
8
middle ear
8
tympanic membrane
8
transmission ear
8
auditory ossicles
8

Similar Publications

Animals employ various strategies to minimize the overlap of their vocalizations with other sounds, thereby enhancing the effectiveness of their communication. However, little attention has been given to experimentally examining how the structure of the acoustic signal changes in response to various kinds of disturbances in the soundscape. In this study, I experimentally investigated whether male thrush nightingales (Luscinia luscinia) adjust their singing rate, song frequency, and song type in response to different types of artificial sounds.

View Article and Find Full Text PDF

Introduction: The tympanic cavity contains three tiny bones, the malleus, incus, and stapes, which have a fundamental role in the transmission of sound. Recent research emphasizes the use of CBCT for the anatomic study of the temporal bone. The information about middle ear anatomy on CBCT scans is meager; hence, this retrospective study was conducted to identify and determine the various morphometrical parameters of the malleus using CBCT which can be helpful during reconstructive procedures for the otologic surgeon.

View Article and Find Full Text PDF

In recent decades, research on mechanotransduction has advanced considerably, focusing on the effects of audible acoustic waves (AAWs) and low-vibration stimulation (LVS), which has propelled the field of sonobiology forward. Taken together, the current evidence demonstrates the influence of these biosignals on key cellular processes, such as growth, differentiation and migration in mammalian cells, emphasizing the determining role of specific physical parameters during stimulation, such as frequency, sound pressure level/amplitude and exposure time. These mechanical waves interact with various cellular elements, including ion channels, primary cilia, cell-cell adhesion receptors, cell-matrix and extracellular matrix proteins, and focal adhesion complexes.

View Article and Find Full Text PDF

Ultra-wide range control of topological acoustic waveguidesa).

J Acoust Soc Am

January 2025

Jianglu Mechanical Electrical Group Company Limited, Xiangtan 411105, China.

Topological acoustic waveguides have a potential for applications in the precise transmission of sound. Currently, there is more attention to multi-band in this field. However, achieving tunability of the operating band is also of great significance.

View Article and Find Full Text PDF

Niche-related processes explain phylogenetic structure of acoustic bird communities in Mexico.

PeerJ

January 2025

Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México.

Acoustic communities are acoustically active species aggregations within a habitat, where vocal interactions between species can interfere their communication. The acoustic adaptation hypothesis (AAH) explains how the habitat favors the transmission of acoustic signals. To understand how bird acoustic communities are structured, we tested the effect of habitat structure on the phylogenetic structure, and on the phylogenetic and vocal diversity of acoustic communities in a semi-arid zone of Mexico.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!