Exosome-derived circTRPS1 promotes malignant phenotype and CD8+ T cell exhaustion in bladder cancer microenvironments.

Mol Ther

Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China. Electronic address:

Published: March 2022

Circular RNAs (circRNAs) play critical roles in different diseases. Exosomes are important intermediates of intercellular communication. While both have been widely reported in cancers, exosome-derived circRNAs are rarely studied. In this work, we identified the differently expressed circRNAs in bladder cancer (BCa) tissue and exosomes through high-throughput sequencing. RNA pull-down, RNA immunoprecipitation, and luciferase reporter assays were used to investigate the interactions between specific circRNAs, microRNAs (miRNAs), and mRNAs. Wound-healing, Transwell, Cell Counting Kit-8 (CCK8), and colony-formation assays were used to study the biological roles in vitro. Metabolomics were used to explore the mechanism of how specific circRNAs influenced BCa cell behavior. Flow cytometry was used to study how specific circRNAs affected the function of CD8+ T cells in tumor microenvironments. We identified that exosome-derived hsa_circ_0085361 (circTRPS1) was correlated with aggressive phenotypes of BCa cells via sponging miR-141-3p. Metabolomics and RNA sequencing (RNA-seq) identified GLS1-mediated glutamine metabolism was involved in circTRPS1-mediated alterations. Exosomes derived from circTRPS1 knocked down BCa cells, prevented CD8+ T cells from exhaustion, and repressed the malignant phenotype of BCa cells. In conclusion, exosome-derived circTRPS1 from BCa cells can modulate the intracellular reactive oxygen species (ROS) balance and CD8+ T cell exhaustion via the circTRPS1/miR141-3p/GLS1 axis. Our work may provide a potential biomarker and therapeutic target for BCa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8899700PMC
http://dx.doi.org/10.1016/j.ymthe.2022.01.022DOI Listing

Publication Analysis

Top Keywords

bca cells
16
specific circrnas
12
exosome-derived circtrps1
8
malignant phenotype
8
bladder cancer
8
cd8+ t cells
8
bca
7
circrnas
6
exosome-derived
4
circtrps1 promotes
4

Similar Publications

E. Coli cytotoxic necrotizing factor-1 promotes colorectal carcinogenesis by causing oxidative stress, DNA damage and intestinal permeability alteration.

J Exp Clin Cancer Res

January 2025

Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Rome, Italy.

Background: Bacterial toxins are emerging as promising hallmarks of colorectal cancer (CRC) pathogenesis. In particular, Cytotoxic Necrotizing Factor 1 (CNF1) from E. coli deserves special consideration due to the significantly higher prevalence of this toxin gene in CRC patients with respect to healthy subjects, and to the numerous tumor-promoting effects that have been ascribed to the toxin in vitro.

View Article and Find Full Text PDF

Background: Bladder cancer (BCa) is one of the most common malignancies worldwide, and its prognostication and treatment remains challenging. The fast growth of various cancer cells requires reprogramming of its energy metabolism using aerobic glycolysis as a major energy source. However, the prognostic and therapeutic value of glycolysis-related genes in BCa remains to be determined.

View Article and Find Full Text PDF

Background: Mounting evidence underline the relevance of macromolecular complexes in cancer. Integrins frequently recruit ion channels and transporters within complexes which behave as signaling hubs. A complex composed by β1 integrin, hERG1 K channel, the neonatal form of the Na channel Na 1.

View Article and Find Full Text PDF

Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).

View Article and Find Full Text PDF

Ultrasound-Guided Histotripsy Triggers the Release of Tumor-Associated Antigens from Breast Cancers.

Cancers (Basel)

January 2025

Department of Internal Medicine, Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, MI 48109, USA.

There is increasing evidence to indicate that histotripsy treatment can enhance the host anti-tumor immune responses both locally at the targeting tumor site as well as systemically from abscopal effects. Histotripsy is a non-invasive ultrasound ablation technology that mechanically disrupts target tissue via cavitation. A key factor contributing to histotripsy-induced abscopal effects is believed to be the release of tumor-specific antigens (TSAs) or tumor-associated antigens (TAAs) that induce a systemic immune response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!