Advancing wet peatland 'paludiculture' innovation present enormous potential to sustain carbon-cycles, reduce greenhouse-gas (GHG) gas emissions and to transition communities to low-carbon economies; however, there is limited scientific-evidence to support and enable direct commercial viability of eco-friendly products and services. This timely study reports on a novel, paludiculture-based, integrated-multi-trophic-aquaculture (IMTA) system for sustainable food production in the Irish midlands. This freshwater IMTA process relies on a naturally occurring ecosystem of microalgae, bacteria and duckweed in ponds for managing waste and water quality that is powered by wind turbines; however, as it is recirculating, it does not rely upon end-of-pipe solutions and does not discharge effluent to receiving waters. This constitutes the first report on the effects of extreme weather events on the performance of this IMTA system that produces European perch (Perca fluviatilis), rainbow trout (Oncorhynchus mykiis) during Spring 2020. Sampling coincided with lockdown periods of worker mobility restriction due to COVID-19 pandemic. Observations revealed that the frequency and intensity of storms generated high levels of rainfall that disrupted the algal and bacterial ecosystem in the IMTA leading to the emergence and predominance of toxic cyanobacteria that caused fish mortality. There is a pressing need for international agreement on standardized set of environmental indicators to advance paludiculture innovation that addresses climate-change and sustainability. This study describes important technical parameters for advancing freshwater aquaculture (IMTA), which can be future refined using real-time monitoring-tools at farm level to inform management decision-making based on evaluating environmental indicators and weather data. The relevance of these findings to informing global sustaining and disruptive research and innovation in paludiculture is presented, along with alignment with UN Sustainable Development goals. This study also addresses global challenges and opportunities highlighting a commensurate need for international agreement on resilient indicators encompassing linked ecological, societal, cultural, economic and cultural domains.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.153073DOI Listing

Publication Analysis

Top Keywords

imta system
12
aquaculture imta
8
disruptive innovation
8
international agreement
8
environmental indicators
8
imta
6
effects climate
4
climate environmental
4
environmental variance
4
variance performance
4

Similar Publications

IMTA is one of the most innovative and sustainable farming systems, exhibiting the best technique available in rearing aquatic organisms belonging to different positions along the trophic levels. In the literature and in legislation, the environmental benefits of IMTA protocols have been extensively recognized, mainly for its capability to reduce the ecological footprint of intensive aquaculture systems and concretely address the Sustainable Development Goal no. 14 (SDG 14).

View Article and Find Full Text PDF

This research aims to minimize the environmental impact and promote the sustainability of aquaculture by optimizing nutrient dynamics, improving water quality and enhancing species growth performance through a land-based Integrated Multi-Trophic Aquaculture (IMTA) system. The study focused on Black Sea trout (Salmo labrax), Mediterranean mussel (Mytilus galloprovincialis), and sea lettuce (Ulva lactuca), reared in interconnected tanks using Black Sea water over 90 days. The Black Sea trout more than doubled in size to 333.

View Article and Find Full Text PDF

Effects of environmental factors on the oxidative status of Anemonia viridis in aquaculture systems.

Comp Biochem Physiol B Biochem Mol Biol

January 2025

Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva s/n, C.P., 18071, Spain. Electronic address:

Due to its depletion in natural settings, the potential for aquaculture of the cnidarian Anemonia viridis is currently attracting research interest. Knowledge about the physiology of this species is necessary to ensure optimal development of, and well-being in, aquaculture. This study tested the effects of different abiotic (limited sunlight, brackish water) and biotic (integrated multitrophic aquaculture or IMTA) conditions on A.

View Article and Find Full Text PDF

The seaweed Chaetomorpha linum cultivated in an integrated multitrophic aquaculture system: A new tool for microplastic bioremediation?

Sci Total Environ

December 2024

Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy. Electronic address:

Microplastics (MPs) are emerging pollutants with detrimental impacts on ecosystems and human health. Due to their adverse effects, new strategies to mitigate MP pollution in the marine environment need to be developed urgently. In this context, the capability of the seaweed Chaetomorpha linum (Chlorophyta, Cladophorales) to trap MPs, as well as the effectiveness of a simple washing procedure to clean up the harvested seaweed biomass, were investigated.

View Article and Find Full Text PDF

(duckweed) is the smallest and fast-growing aquatic plant species producing protein-rich biomass with high protein nutritional value, phytoremediation capacity, and nutrient removal from wastewater. Duckweed may also be used as a new potential bioreactor for biological products, such as vaccines, antibodies, and pharmaceutical proteins. Based upon the potential importanc of in phytoremediation and as a bioreactor the aim of this study was to (1) characterize the chemical and nutritional profiles of biomass utilizing an integrated multi-trophic aquaculture system (IMTA) and a pond, and (2) investigate the cytotoxic potential of different concentrations of organic extracts and fractions using the MTT bioassay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!