Persistence of wastewater-associated antibiotic resistant bacteria in river microcosms.

Sci Total Environ

Department of Biology, Virginia Commonwealth University, 1000 W Cary Street, Richmond, Virginia 23284, USA. Electronic address:

Published: May 2022

The spread of antibiotic-resistant bacteria (ARB) associated with wastewater is a significant environmental concern, but little is known about the persistence and proliferation of these organisms in receiving water bodies after discharge. To address this knowledge gap, we performed a series of microcosm experiments in which river water was amended with either untreated or treated wastewater, and the abundance of viable ciprofloxacin-, Bactrim-, and erythromycin-resistant bacteria was monitored for 72 h. Both types of wastewater amendments significantly increased the initial abundance of ARB compared to microcosms containing only river water (all p < 0.03). The increase was greatest with untreated wastewater, but that effect decreased steadily over time. In contrast, microcosms amended with treated wastewater saw a smaller initial increase and more complex temporal dynamics. Following a brief lag, ARB abundance bloomed for all three of the antibiotics that we considered. This suggests that ARB that survive wastewater treatment are particularly hardy and may proliferate in riverine conditions after a short recovery period. To determine how interactions with the native river microbial community impacted the persistence of wastewater-associated ARB, an additional set of microcosms was prepared using filter-sterilized river water. Peak abundance in these microcosms was significantly higher by 1-2 orders of magnitude compared to microcosms containing an intact river microbial community (all p < 0.05), which suggests that biotic interactions play a significant role in regulating the persistence and proliferation of ARB. The data presented in this paper are among the first available that specifically consider persistence of viable ARB and represent an important step toward understanding AR-related human health risks downstream from wastewater discharge points and following sewer overflow events. Additional studies that consider longer time scales and the interplay of biotic and abiotic variables are essential for modeling public health risks associated with wastewater inputs of ARB to rivers and other aquatic environments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.153099DOI Listing

Publication Analysis

Top Keywords

river water
8
persistence wastewater-associated
4
wastewater-associated antibiotic
4
antibiotic resistant
4
resistant bacteria
4
bacteria river
4
river microcosms
4
microcosms spread
4
spread antibiotic-resistant
4
antibiotic-resistant bacteria
4

Similar Publications

Environmental antibiotic residues (EARs) and antibiotic-resistant bacteria (ARB) are known to contribute to global antimicrobial resistance (AMR). This study investigated EAR levels in selected wells, river, abattoir wastewater, bottled water and sachet water from Ede, Nigeria. Ecological risk quotient (RQ) and health risk (Hazard quotient) of the levels of these EARs, ARB and multidrug-resistant bacteria (MDR) with their antibiotic resistance were calculated.

View Article and Find Full Text PDF

Vegetation productivity and ecosystem carbon sink capacity are significantly influenced by seasonal weather patterns. The time lags between changes in these patterns and ecosystem (including vegetation) responses is a critical aspect in vegetation-climate and ecosystem-climate interactions. These lags can vary considerably due to the spatial heterogeneity of vegetation and ecosystems.

View Article and Find Full Text PDF

An integrated understanding of dissolved phosphorous (DP) export mechanism and controls on export over dry and wet periods is crucial for riverine ecological restorations in dammed river basins considering its high bioavailability and retention rates at dams. Riverine DP transport patterns (composition, sources, and transport pathways), export controls, and fate were investigated over the 2020 wet season (5 events) and dry seasons before and after it (2 events: dry and dry) in a semi-arid, small-dammed watershed to comprehend the links between terrestrial DP sources and aquatic DP sinks. Close spatiotemporal monitoring of the full range of phosphorous and total suspended solids (TSSs) and subsequent analyses (hysteresis, hierarchical partitioning, and coefficient of variation) provided the basis for the study.

View Article and Find Full Text PDF

Loess is extensively developed on both sides of the Longwu River, a tributary of the Yellow River, Tongren County, Qinghai Province. The engineering geological characteristics are complex, and landslide disasters are highly developed. Based on field geological surveys and physical property analysis of the loess in this area, this study analyzes the influence of water content, consolidation pressure, and soil disturbance on the dynamic characteristics of loess using GDS dynamic triaxial tests.

View Article and Find Full Text PDF

Phases partitioning and occurrence forms of arsenic, chromium, and vanadium in a tidal reach of the Pearl River estuary, South China.

Environ Pollut

January 2025

Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.

Migration characteristics and occurrence forms of redox-sensitive metal(loid)s such as arsenic (As), chromium (Cr), and vanadium (V) remained unclear in dynamic estuarine waters. In this work, size fractionation and chemical speciation of As, Cr, and V in the Jiaomen Waterway (JMW), a tidal river of the Pearl River estuary, were explored based on (ultra)filtration, the diffusive gradients in thin films (DGT) techniques and a thermodynamic chemical equilibrium model. The results showed that As was present mainly in soluble forms in the river water, and the suspended particulate matter (SPM) was identified the major carrier for Cr.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!