Automatic Segmentation of Maximum Aortic Diameter to Standardize Methods of Measurements on Computed Tomography Angiography.

Ann Vasc Surg

Inserm U1065, C3M, Université Côte d'Azur, Nice, France; Clinical Chemistry Laboratory, University Hospital of Nice, France; 3IA Institute, Université Côte d'Azur, Sophia-Antipolis, France.

Published: April 2022

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.avsg.2022.01.001DOI Listing

Publication Analysis

Top Keywords

automatic segmentation
4
segmentation maximum
4
maximum aortic
4
aortic diameter
4
diameter standardize
4
standardize methods
4
methods measurements
4
measurements computed
4
computed tomography
4
tomography angiography
4

Similar Publications

Imaging-based spatial transcriptomics (ST) is evolving rapidly as a pivotal technology in studying the biology of tumors and their associated microenvironments. However, the strengths of the commercially available ST platforms in studying spatial biology have not been systematically evaluated using rigorously controlled experiments. In this study, we used serial 5-m sections of formalin-fixed, paraffin-embedded surgically resected lung adenocarcinoma and pleural mesothelioma tumor samples in tissue microarrays to compare the performance of the single cell ST platforms CosMx, MERFISH, and Xenium (uni/multi-modal) platforms in reference to bulk RNA sequencing, multiplex immunofluorescence, GeoMx Digital Spatial Profiler, and hematoxylin and eosin staining data for the same samples.

View Article and Find Full Text PDF

Background: The outcome of coronary artery bypass grafting (CABG) depends on several factors, including the quality of the distal anastomoses to the coronary arteries. Early graft failure may be caused by, e.g.

View Article and Find Full Text PDF

Objective To establish an automatic reduction method for unilateral zygomatic fractures based on Iterative Closes Point(ICP)algorithm. Material and Methods 60 patients with unilateral type B zygomatic fractures were included. After acquiring CT images, zygomatic fragments were segmented using self-developed software MICSys.

View Article and Find Full Text PDF

Objectives: The aims of the study are to predict lung function impairment in patients with connective tissue disease (CTD)-associated interstitial lung disease (ILD) through computed tomography (CT) quantitative analysis parameters based on CT deep learning model and density threshold method and to assess the severity of the disease in patients with CTD-ILD.

Methods: We retrospectively collected chest high-resolution CT images and pulmonary function test results from 105 patients with CTD-ILD between January 2021 and December 2023 (patients staged according to the gender-age-physiology [GAP] system), including 46 males and 59 females, with a median age of 64 years. Additionally, we selected 80 healthy controls (HCs) with matched sex and age, who showed no abnormalities in their chest high-resolution CT.

View Article and Find Full Text PDF

Simple quantitation and spatial characterization of label free cellular images.

Heliyon

December 2024

Human and Animal Physiology, Department Animal Sciences, Wageningen University, De Elst 1, 6708WD, Wageningen, the Netherlands.

Label-free imaging is routinely used during cell culture because of its minimal interference with intracellular biology and capability of observing cells over time. However, label-free image analysis is challenging due to the low contrast between foreground signals and background. So far various deep learning tools have been developed for label-free image analysis and their performance depends on the quality of training data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!