Atomistic Engineering of Phonons in Functional Oxide Heterostructures.

Adv Sci (Weinh)

Department of Physics, Sungkyunkwan University, Suwon, 16419, Korea.

Published: March 2022

Engineering of phonons, that is, collective lattice vibrations in crystals, is essential for manipulating physical properties of materials such as thermal transport, electron-phonon interaction, confinement of lattice vibration, and optical polarization. Most approaches to phonon-engineering have been largely limited to the high-quality heterostructures of III-V compound semiconductors. Yet, artificial engineering of phonons in a variety of materials with functional properties, such as complex oxides, will yield unprecedented applications of coherent tunable phonons in future quantum acoustic devices. In this study, artificial engineering of phonons in the atomic-scale SrRuO /SrTiO superlattices is demonstrated, wherein tunable phonon modes are observed via confocal Raman spectroscopy. In particular, the coherent superlattices led to the backfolding of acoustic phonon dispersion, resulting in zone-folded acoustic phonons in the THz frequency domain. The frequencies can be largely tuned from 1 to 2 THz via atomic-scale precision thickness control. In addition, a polar optical phonon originating from the local inversion symmetry breaking in the artificial oxide superlattices is observed, exhibiting emergent functionality. The approach of atomic-scale heterostructuring of complex oxides will vastly expand material systems for quantum acoustic devices, especially with the viability of functionality integration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8895146PMC
http://dx.doi.org/10.1002/advs.202103403DOI Listing

Publication Analysis

Top Keywords

engineering phonons
16
artificial engineering
8
complex oxides
8
oxides will
8
quantum acoustic
8
acoustic devices
8
phonons
6
atomistic engineering
4
phonons functional
4
functional oxide
4

Similar Publications

Achieving Superior Thermoelectric Performance in Methoxy-Functionalized MXenes: The Role of Organic Functionalization.

ACS Appl Mater Interfaces

January 2025

College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.

Thermoelectric technology enables the direct and reversible conversion of heat into electrical energy without air pollution. Herein, the stability, electronic structure, and thermoelectric properties of methoxy-functionalized MC(OMe) (M = Sc, Ti, V, Cr, Y, Zr, Nb, Mo, Hf, Ta, and W) were systematically investigated using first-principles calculations and semiclassical Boltzmann transport theory. All MXenes, except those with M = Cr, Mo, and W, can be synthesized by substituting Cl- and Br-functionalized MXenes with deprotonated methanol, with stability governed by the M-O bond strength.

View Article and Find Full Text PDF

Quantum error correction (QEC) provides a practical path to fault-tolerant quantum computing through scaling to large qubit numbers, assuming that physical errors are sufficiently uncorrelated in time and space. In superconducting qubit arrays, high-energy impact events can produce correlated errors, violating this key assumption. Following such an event, phonons with energy above the superconducting gap propagate throughout the device substrate, which in turn generate a temporary surge in quasiparticle (QP) density throughout the array.

View Article and Find Full Text PDF

Superdiffusive Thermal Transport in Polymer-Grafted Nanoparticle Melts.

Phys Rev Lett

December 2024

Center for Phononics and Thermal Energy Science, School of Physics Science and Engineering, Tongji University, Shanghai 20092, China.

In contrast to normal diffusion processes, thermal conduction in one-dimensional systems is anomalous. The thermal conductivity is found to vary with the length as κ∼L^{α}(α>0), but there is a long-standing debate on the value α. Here, we present a canonical example of this behavior in polymer-grafted spherical nanoparticle (GNP) melts at fixed grafting density and nanoparticle radius.

View Article and Find Full Text PDF

Anisotropic materials with low symmetries hold significant promise for next-generation electronic and quantum devices. 2M-WS, which is a candidate for topological superconductivity, has garnered considerable interest. However, a comprehensive understanding of how its anisotropic features contribute to unconventional superconductivity, along with a simple, reliable method to identify its crystal orientation, remains elusive.

View Article and Find Full Text PDF

CO capture and separation from natural and fuel gas are important industrial issues that refer to the control of CO emissions and the purification of target gases. Here, a novel non-planar g-CN monolayer that could be synthesized the supramolecular self-assembly strategy was identified using DFT calculations. The cohesive energy, phonon spectrum, BOMD, and mechanical stability criteria confirm the stability of the g-CN monolayer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!