Woody-plant encroachment is a global phenomenon that has been affecting the southwestern United States since the late 1800s. Drought, overgrazing, herbivory, and competition between grasses and shrub seedlings have been hypothesized as the main drivers of shrub establishment. However, there is limited knowledge about the interactions among these drivers. Using a rainfall manipulation system and various herbivore exclosures, we tested hypotheses about how precipitation (PPT), competition between grasses and shrub seedlings, and predation affect the germination and first-year survival of mesquite (Prosopis glandulosa), a shrub that has encroached in Southern Great Plains and Chihuahuan Desert grasslands. We found that mesquite germination and survival (1) increased with increasing PPT, then saturated at about the mean growing season PPT level, (2) that competition between grasses and shrub seedlings had no effect on either germination or survival, and (3) that herbivory by small mammals decreased seedling establishment and survival, while ant granivory showed no effect. In addition to its direct positive effect on survival, PPT had an indirect negative effect via increasing small mammal activity. Current models predict a decrease in PPT in the southwestern United States with increased frequency of extreme events. The non-linear nature of PPT effects on Mesquite recruitment suggests asymmetric responses, wherein drought has a relatively greater negative effect than the positive effect of wet years. Indirect effects of PPT, through its effects on small mammal abundance, highlight the importance of accounting for interactions between biotic and abiotic drivers of shrub encroachment. This study provides quantitative basis for developing tools that can inform effective shrub management strategies in grasslands and savannas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/eap.2536 | DOI Listing |
Ecology
January 2025
Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden.
Priority effects, the effects of early-arriving species on late-arriving species, are caused by niche preemption and/or niche modification. The strength of priority effects can be determined by the extent of niche preemption and/or modification by the early-arriving species; however, the strength of priority effects may also be influenced by the late-arriving species, as some species may be better adapted to deal with niche preemption and/or modification. Therefore, some combinations of species will likely lead to stronger priority effects than others.
View Article and Find Full Text PDFPeerJ
January 2025
Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China.
With the expansion of the mining industry, environmental pollution from microelements (MP) and red mud (RM) has become a pressing issue. While bioremediation offers a cost-effective and sustainable solution, plant growth in these polluted environments remains difficult. is one of the few plants capable of surviving in RM-affected soils.
View Article and Find Full Text PDFPlants (Basel)
December 2024
School of Agriculture and Food Sustainability, The University of Queensland, Gatton, QLD 4343, Australia.
This study assessed the effectiveness of four competitive pasture species-Premier digit grass ( Steud. var. Premier), Rhodes grass ( Kunth.
View Article and Find Full Text PDFAm J Bot
January 2025
Department of Botany, University of Wisconsin-Madison, Madison, 53706, WI, USA.
Premise: Five C grasses (Bouteloua curtipendula, Schizachyrium scoparium, Andropogon gerardii, Sorghastrum nutans, Spartina pectinata) dominate different portions of a moisture gradient from dry to wet tallgrass prairies in the Upper Midwest of the United States. We hypothesized that their distributions may partly reflect differences in flooding tolerance and context-specific growth relative to each other.
Methods: We tested these ideas with greenhouse flooding and drought experiments, outdoor mesocosm experiments, and a natural experiment involving a month-long flood in two wet-mesic prairies.
Brief Funct Genomics
January 2025
Department of Computer Science & Engineering, University of Kalyani, Kalyani-741235, India.
Deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) sequence compressors for novel species frequently face challenges when processing wide-scale raw, FASTA, or multi-FASTA structured data. For years, molecular sequence databases have favored the widely used general-purpose Gzip and Zstd compressors. The absence of sequence-specific characteristics in these encoders results in subpar performance, and their use depends on time-consuming parameter adjustments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!