A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Competing risks analysis with missing cause-of-failure-penalized likelihood estimation of cause-specific Cox models. | LitMetric

Competing risks models are attractive tools to analyze time-to-event data where several causes of an event are competing. However, a complexity may arise when, for instance, some subjects experience the event of interest but the causes are not known. Assuming that unknown causes of events are missing at random, we developed a novel constrained maximum penalized likelihood method for fitting semi-parametric cause-specific Cox regression models. Here, penalty functions were used to smooth the baseline hazards. An appealing feature of this approach is that all the relevant estimands in competing risks models are estimated including cause-specific hazard ratios, cause-specific baseline hazards, and cumulative incidence functions. Asymptotic results for these estimators were also developed, allowing for direct inferences. The proposed method was compared with some existing methods through a simulation study. A real data example was analyzed using the new method to evaluate the association of age at diagnosis with melanoma-death and non-melanoma-death in patients diagnosed with thin melanoma (tumour thickness 1.0  mm). An R function for our proposed method is currently available on GitHub and will be included in the R package "survivalMPL" at CRAN.

Download full-text PDF

Source
http://dx.doi.org/10.1177/09622802211070254DOI Listing

Publication Analysis

Top Keywords

competing risks
12
cause-specific cox
8
risks models
8
baseline hazards
8
proposed method
8
competing
4
risks analysis
4
analysis missing
4
missing cause-of-failure-penalized
4
cause-of-failure-penalized likelihood
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!