MUC16 is a membrane bound glycoprotein involved in the progression and metastasis of pancreatic and ovarian cancer. The protein is shed into the serum and the resulting cancer antigen 125 (CA125) can be detected by immunoassays. The CA125 epitope is used for monitoring ovarian cancer treatment progression, and has emerged as a potential target for antibody mediated immunotherapy. The extracellular tandem repeat domain of the protein is composed of repeating segments of heavily glycosylated sequence intermixed with homologous SEA (Sperm protein, Enterokinase and Agrin) domains. Here we report the purification and the first X-ray structure of a human MUC16 SEA domain. The structure was solved by molecular replacement using a Rosetta generated structure as a search model. The SEA domain reacted with three different MUC16 therapeutic antibodies, confirming that the CA125 epitope is localized to the SEA domain. The structure revealed a canonical ferredoxin-like fold, and contained a conserved disulfide bond. Analysis of the relative solvent accessibility of side chains within the SEA domain clarified the assignment of N-linked and O-linked glycosylation sites within the domain. A model of the glycosylated SEA domain revealed two major accessible faces, which likely represent the binding sites of CA125 specific antibodies. The results presented here will serve to accelerate future work to understand the functional role of MUC16 SEA domains and antibody recognition of the CA125 epitope.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9007846PMC
http://dx.doi.org/10.1002/prot.26303DOI Listing

Publication Analysis

Top Keywords

sea domain
24
muc16 sea
12
ca125 epitope
12
structure human
8
human muc16
8
sea
8
domain
8
ovarian cancer
8
domain structure
8
ca125
6

Similar Publications

Ascorbic acid transporter MmSLC23A2 functions to inhibit apoptosis via ROS scavenging in hard clam (Mercenaria mercenaria) under acute hypo-salinity stress.

Int J Biol Macromol

January 2025

Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China. Electronic address:

Solute carrier family 23 (SLC23) mediates cellular uptake of ascorbic acid, a crucial antioxidant protecting organisms against oxidative stress. Despite advances in understanding SLC23 in mammals, its physiological roles in bivalves remain poorly understood. Notably, euryhaline bivalves exhibit a significant expansion and positive selection of SLC23, highlighting the need for deeper investigation.

View Article and Find Full Text PDF

FADD cooperates with Caspase-8 to positively regulate the innate immune response and promote apoptosis following bacterial infection in Japanese eel.

Fish Shellfish Immunol

January 2025

Jimei University, College of Fisheries, Key Laboratory of Healthy Mariculture for the East China Sea, Xiamen, 361021, China; Jimei University, College of Fisheries, Engineering Research Center of the Modern Technology for Eel Industry, Xiamen, 361021, China. Electronic address:

Fas-associated protein with Death Domain (FADD) is a crucial signaling component of apoptosis and a vital immunomodulator on inflammatory signaling pathways. However, information on FADD-mediated apoptosis and immune regulation is limited in teleost. We herein cloned a FADD homolog, AjFADD, from Japanese eel (Anguilla japonica).

View Article and Find Full Text PDF

Identification of the arachidonic acid 5-lipoxygenase and its function in the immunity of Apostichopus japonicus.

Fish Shellfish Immunol

December 2024

Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China; Dalian Jinshiwan Laboratory, Dalian, PR China. Electronic address:

A number of studies have been demonstrated that arachidonate 5-lipoxygenase (ALOX-5) plays a role in regulating a range of physiological and pathological processes through the catalysis of leukotriene formation from arachidonic acid (ARA). The coding sequence of ALOX-5 from Apostichopus japonicus (Aj-ALOX-5) was successfully amplified, resulting in a 2028 bp ORF sequence that encodes 674 amino acids. A comparison of the amino acid sequence with those of other 5-lipoxygenases revealed that Aj-ALOX-5 has the N-terminal "PLAT domain" and C-terminal "lipoxygenase structural domain" characteristic of this enzyme family.

View Article and Find Full Text PDF

TRPA1 is a homotetrameric non-selective calcium-permeable channel. It contributes to chemical and temperature sensitivity, acute pain sensation, and development of inflammation. HCIQ2c1 is a peptide from the sea anemone that inhibits serine proteases.

View Article and Find Full Text PDF

A high-resolution record of central Mediterranean Sea Surface Temperatures (SSTs) based on the alkenone UK'37 index and planktic δ18O values for the surface-dweller G. ruber has been reconstructed across the Pliocene/Pleistocene transition at Monte San Nicola (Sicily), reference area for the GSSP (Global Boundary Stratotype Section and Point) of the Gelasian Stage. Spectral analyses indicate that the SST record is predominantly paced by a cyclicity in the ~47 kyr time domain, consistent with the obliquity driven glacial-interglacial variability that is expected to dominate in the interval of relevance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!