The aim of the present investigation was to develop niosomes containing both curcumin (CUR) and methotrexate (MTX). Also, the combinational effect of CUR and MTX in both free and niosomal forms on growth inhibition potential and induction of apoptosis in the HCT-116 cell line were exploited. Niosomes were prepared by the thin-film hydration method and their physicochemical properties were determined by various techniques. Cellular uptake, cell apoptosis, wound healing and MTT assay were conducted to ascertain niosomes' feasibility for cancer therapy. The combination of CUR and MTX in niosomal formulation showed more toxicity than their combination in free form. The nanocarrier-based approach was effective for the codelivery of CUR and MTX against cancer cells .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2217/nnm-2021-0334 | DOI Listing |
Ann Med
December 2025
Department of Histology and Embryology, Bülent Ecevit University, Zonguldak, Turkey.
Background: Methotrexate (MTX) is an agent used in the treatment of many neoplastic and non-neoplastic diseases and is known to cause oxidative damage in normal tissues. Curcumin (Cur) is a natural polyphenol compound with powerful antioxidant and antiapoptotic effects. In this study we investigate the effects of Cur on MTX-induced ovarian damage.
View Article and Find Full Text PDFJ Control Release
December 2024
Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.935 Jiaoling Road, Kunming 650118, China; State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China. Electronic address:
The tumor vaccine aims to activate the immune system, promote antitumor cellular responses, and restore immune recognition and clearance of tumor cells. However, the low immunogenicity and heterogeneity of tumor antigens, along with immunosuppressive mechanisms, severely hinder tumor vaccines from achieving an efficient and sustained antitumor effect. Herein, we developed a combined vaccine strategy that utilizes immunogenic cell death (ICD) to elicit a broad spectrum of antigen-specific responses in a whole-cell-based manner.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", 80138 Napoli, Italy.
Osteosarcoma (OS) is the most severe bone tumor in children. A chemotherapy regimen includes a combination of high-dose Methotrexate (MTX), doxorubicin, and cisplatin. These drugs cause acute and chronic side effects, such as infections, thrombocytopenia, neutropenia, DNA damage, and inflammation.
View Article and Find Full Text PDFSci Rep
May 2024
Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie-Anorganische Chemie, Freie Universität Berlin, Fabeckstr, Germany.
Carbon nanotubes (CNTs) have the potential to serve as delivery systems for medicinal substances and gene treatments, particularly in cancer treatment. Co-delivery of curcumin (CUR) and Methotrexate (MTX) has shown promise in cancer treatment, as it uses fewer drugs and has fewer side effects. This study used MTX-conjugated albumin (BSA)-based nanoparticles (BSA-MTX) to enhance and assess the efficiency of CUR.
View Article and Find Full Text PDFDrug Dev Ind Pharm
August 2023
Department of Pharmaceutics, Manipal Academy of Higher Education, Manipal, Karnataka.
Purpose: Bovine serum albumin (BSA) nanoparticles (BSA-MTX-CUR-NPs) encapsulating methotrexate (MTX) and curcumin (CUR) was developed with an aim to co-deliver the drugs at the inflamed joint so as to maximize the therapeutic efficacy and alleviate toxic side effects associated with MTX.
Methods: Nanoparticle albumin-bound technology was used to formulate nanoparticles, followed by characterization for its particle size, polydispersity index, encapsulation efficiency, zeta potential, surface morphology, drug release and drug release kinetics. Further, we investigated the pharmacokinetics and pharmacodynamics of the developed nanoparticles in the adjuvant-induced arthritis model.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!