Understanding the interaction of proteins to ion exchange chromatographic supports: A surface energetics approach.

Biotechnol Prog

Downstream Bioprocessing Laboratory, School of Engineering and Science, Jacobs University, Bremen, Germany.

Published: March 2022

Ion exchange chromatography is one of the most widely used chromatographic technique for the separation and purification of important biological molecules. Due to its wide applicability in separation processes, a targeted approach is required to suggest the effective binding conditions during ion exchange chromatography. A surface energetics approach was used to study the interaction of proteins to different types of ion exchange chromatographic beads. The basic parameters used in this approach are derived from the contact angle, streaming potential, and zeta potential values. The interaction of few model proteins to different anionic and cationic exchanger, with different backbone chemistry, that is, agarose and methacrylate, was performed. Generally, under binding conditions, it was observed that proteins having negative surface charges showed strong to lose interaction (20 kT for Hannilase to 0.5 kT for IgG) with different anionic exchangers (having different positive surface charges). On the contrary, anionic exchangers showed almost no interaction (0-0.1 kT) with the positively charged proteins. An inverse behavior was observed for the interaction of proteins to cationic exchangers. The outcome from these theoretical calculations can predict the binding behavior of different proteins under real ion exchange chromatographic conditions. This will ultimately propose a better bioprocess design for protein separation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/btpr.3232DOI Listing

Publication Analysis

Top Keywords

ion exchange
20
interaction proteins
12
exchange chromatographic
12
surface energetics
8
energetics approach
8
exchange chromatography
8
binding conditions
8
surface charges
8
anionic exchangers
8
proteins
7

Similar Publications

Article Synopsis
  • Pseudomonas aeruginosa is problematic in healthcare due to its high antibiotic resistance, highlighting the need for new antimicrobial solutions.
  • A study focused on isolating a new bacteriocin from Enterococcus faecium found in stool samples, which showed promise against multidrug-resistant P. aeruginosa.
  • The purified bacteriocin, enterocin GH, demonstrated significant antibacterial and antibiofilm activity against P. aeruginosa, outperforming controls in laboratory tests.
View Article and Find Full Text PDF

Adding colour to ion-selective membranes.

Talanta

January 2025

Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland. Electronic address:

An idea of using ion-exchanger salt containing optically active cations to prepare ion-selective membranes is proposed. Although the presence of an ion-exchanger in the composition of neutral ionophore based sensors is necessary, the choice of available salts for cation-selective sensors preparation, is usually limited to sodium or potassium compounds. In this work we propose application of an alternative salt, using a cation optically active both in absorption and emission mode as a mobile one.

View Article and Find Full Text PDF

Investigating the interaction between calcium signaling and ferroptosis for novel cancer treatment.

Phytomedicine

January 2025

Cancer Center, Faculty of Health Sciences, University of Macau, Macau (SAR), China. MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), PR China. Electronic address:

Article Synopsis
  • Drug resistance in cancer is increasing, highlighting the need for new therapeutic targets, particularly through ion interference strategies involving calcium ions (Ca).
  • The study investigates the link between calcium ions and ferroptosis (iron-induced cell death), suggesting that disrupted calcium balance could lead to increased ferroptosis in cancer cells, providing a novel treatment target.
  • Findings indicate that Ca modulates ferroptosis by affecting reactive oxygen species (ROS) and glutathione (GSH) levels in various cancer and normal cells, with potential applications for plant-derived compounds as effective anticancer treatments.
View Article and Find Full Text PDF
Article Synopsis
  • A magnesium-aluminum layered double hydroxide (LDH) was created using a coprecipitation technique from a nitrate solution and transformed into a layered double oxide (LDO) after being heated to 450 °C.
  • During rehydration in a fluoride solution, the LDH's original structure was restored and fluoride ions were absorbed to maintain balance, a finding confirmed by energy-dispersive X-ray spectroscopy (EDS).
  • The study demonstrated that using ethanol during the rehydration process significantly increased fluoride incorporation, and the fluoride release pattern from the material revealed a rapid initial release followed by a slower, prolonged release.
View Article and Find Full Text PDF

Brochantite was precipitated using stoichiometric amounts of CuSO and NaOH and characterized by scanning electron microscopy, specific surface area, thermogravimetric analysis, and zeta potential. Brochantite can be converted into paratacamite, basic copper bromide, and copper phthalate by shaking the powder with solutions containing excess corresponding anions. By contrast, attempts to convert brochantite into basic iodide, acetate, nitrate, or rhodanide in a similar way failed, that is, the powder after shaking with solutions containing excess corresponding anions still showed the powder X-ray diffraction pattern of brochantite.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!