Genomic deletion of donor-patient-mismatched HLA alleles in leukemic cells is a major cause of relapse after allogeneic hematopoietic stem cell transplantation (HSCT). Mismatched HLA is frequently lost as an individual allele or a whole region in HLA-class I, however, it is downregulated in HLA-class II. We hypothesized that there might be a difference in T cell recognition capacity against epitopes associated with HLA-class I and HLA-class II and consequently such allogeneic immune pressure induced HLA alterations in leukemic cells. To investigate this, we conducted in vitro experiments with T cell receptor-transduced T (TCR-T) cells. The cytotoxic activity of NY-ESO-1-specific TCR-T cells exhibited similarly against K562 cells with low HLA-A*02:01 expression. However, we demonstrated that the cytokine production against low HLA-DPB1*05:01 expression line decreased gradually from the HLA expression level approximately 2-log lower than normal expressors. Using sort-purified leukemia cells before and after HSCT, we applied the next-generation sequencing, and revealed that there were several marked downregulations of HLA-class II alleles which demonstrated consistently low expression from pre-transplantation. The marked downregulation of HLA-class II may lead to decreased antigen recognition ability of antigen-specific T cells and may be one of immune evasion mechanism associated with HLA-class II downregulation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12185-021-03273-wDOI Listing

Publication Analysis

Top Keywords

relapse allogeneic
8
stem cell
8
cell transplantation
8
cells
8
antigen-specific cells
8
leukemic cells
8
associated hla-class
8
tcr-t cells
8
hla-class
7
downregulation hla
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!