Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Plant phenomics field has seen a great increase in scalability in the last decade mainly due to technological advances in remote sensors and phenotyping platforms. These are capable of screening thousands of plants many times throughout the day, generating massive amounts of data, which require an automated analysis to extract meaningful information. Deep learning is a branch of machine learning that has revolutionized many fields of research. Deep learning models are able to extract autonomously the underlying features within the dataset, providing a multi-level representation of the data. Our intention is to show the feasibility and effectiveness of using deep learning and low-cost technology for automated phenotyping. In this methods chapter, we describe how to train a deep neural network to segment leaf images and extract the pixels related to the disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-2067-0_22 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!