Visualization Tools for Genomic Conservation.

Methods Mol Biol

Agriculture and Agri-Food Canada, Saskatoon, SK, Canada.

Published: March 2022

SynVisio and Accusyn ( genomevis.usask.ca ) are freely available web-based tools for visualizing genomic conservation that provide easy-to-access visualizations for researchers to interact with their datasets and change parameters in real time to carry out synteny exploration and analysis through multiple coordinated visual representations. The tools use standard file formats and outputs from existing synteny detection systems such as MCScanX or DAGChainer, and provide several features that are valuable for large-scale genomic analysis: a range of visualization scales from full genomes down to single collinearity blocks; single-level and multiple-level plots that enable the analysis of more than two genomic regions; annotation tracks that can be loaded using standard BedGraph files; several techniques for reducing visual clutter in visualizations; the ability to download high-quality images of the visualizations; and a snapshot panel for storing configurations of the interface for later revisitation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-2067-0_16DOI Listing

Publication Analysis

Top Keywords

genomic conservation
8
visualization tools
4
genomic
4
tools genomic
4
conservation synvisio
4
synvisio accusyn
4
accusyn genomevisusaskca
4
genomevisusaskca freely
4
freely web-based
4
web-based tools
4

Similar Publications

In populations of small effective size (N), such as those in conservation programmes, companion animals or livestock species, inbreeding control is essential. Homozygosity-by-descent (HBD) segments provide relevant information in that context, as they allow accurate estimation of the inbreeding coefficient, provide locus-specific information and their length is informative about the "age" of inbreeding. Our objective was to evaluate tools for predicting HBD in future offspring based on parental genotypes, a problem equivalent to identifying segments identical-by-descent (IBD) among the four parental chromosomes.

View Article and Find Full Text PDF

STMGraph: spatial-context-aware of transcriptomes via a dual-remasked dynamic graph attention model.

Brief Bioinform

November 2024

Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China.

Spatial transcriptomics (ST) technologies enable dissecting the tissue architecture in spatial context. To perceive the global contextual information of gene expression patterns in tissue, the spatial dependence of cells must be fully considered by integrating both local and non-local features by means of spatial-context-aware. However, the current ST integration algorithm ignores for ST dropouts, which impedes the spatial-aware of ST features, resulting in challenges in the accuracy and robustness of microenvironmental heterogeneity detecting, spatial domain clustering, and batch-effects correction.

View Article and Find Full Text PDF

Introduction: WhiA is a conserved protein found in numerous bacteria. It consists of an HTH DNA-binding domain linked with a homing endonuclease (HEN) domain. WhiA is one of the most conserved transcription factors in reduced bacteria of the class Mollicutes.

View Article and Find Full Text PDF

Assembly and comparative analysis of the complete mitogenome of var. , an exceptional berry plant possessing sweet leaves.

Front Plant Sci

December 2024

Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, College of Life Sciences, Taizhou University, Taizhou, China.

var. is a special berry plant of in the Rosaceae family. Its leaves contain high-sweetness, low-calorie, and non-toxic sweet ingredients, known as rubusoside.

View Article and Find Full Text PDF

tRNA gene content, structure, and organization in the flowering plant lineage.

Front Plant Sci

December 2024

National Institute of Molecular Biology and Biotechnology, College of Science, University of the Philippines Diliman, Quezon City, Philippines.

Transfer RNAs (tRNAs) are noncoding RNAs involved in protein biosynthesis and have noncanonical roles in cellular metabolism, such as RNA silencing and the generation of transposable elements. Extensive tRNA gene duplications, modifications to mature tRNAs, and complex secondary and tertiary structures impede tRNA sequencing. As such, a comparative genomic analysis of complete tRNA sets is an alternative to understanding the evolutionary processes that gave rise to the extant tRNA sets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!