Microscopic examination of blood smears remains the gold standard for laboratory inspection and diagnosis of malaria. Smear inspection is, however, time-consuming and dependent on trained microscopists with results varying in accuracy. We sought to develop an automated image analysis method to improve accuracy and standardization of smear inspection that retains capacity for expert confirmation and image archiving. Here, we present a machine learning method that achieves red blood cell (RBC) detection, differentiation between infected/uninfected cells, and parasite life stage categorization from unprocessed, heterogeneous smear images. Based on a pretrained Faster Region-Based Convolutional Neural Networks (R-CNN) model for RBC detection, our model performs accurately, with an average precision of 0.99 at an intersection-over-union threshold of 0.5. Application of a residual neural network-50 model to infected cells also performs accurately, with an area under the receiver operating characteristic curve of 0.98. Finally, combining our method with a regression model successfully recapitulates intraerythrocytic developmental cycle with accurate lifecycle stage categorization. Combined with a mobile-friendly web-based interface, called PlasmoCount, our method permits rapid navigation through and review of results for quality assurance. By standardizing assessment of Giemsa smears, our method markedly improves inspection reproducibility and presents a realistic route to both routine lab and future field-based automated malaria diagnosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8724263PMC
http://dx.doi.org/10.1017/S2633903X21000015DOI Listing

Publication Analysis

Top Keywords

convolutional neural
8
neural networks
8
smear inspection
8
rbc detection
8
stage categorization
8
performs accurately
8
method
5
automated detection
4
detection staging
4
staging malaria
4

Similar Publications

Near-infrared (NIR) spectroscopy, with its advantages of non-destructive analysis, simple operation, and fast detection speed, has been widely applied in various fields. However, the effectiveness of current spectral analysis techniques still relies on complex preprocessing and feature selection of spectral data. While data-driven deep learning can automatically extract features from raw spectral data, it typically requires large amounts of labeled data for training, limiting its application in spectral analysis.

View Article and Find Full Text PDF

Recent advances of artificial intelligence (AI) in retinal imaging found its application in two major categories: discriminative and generative AI. For discriminative tasks, conventional convolutional neural networks (CNNs) are still major AI techniques. Vision transformers (ViT), inspired by the transformer architecture in natural language processing, has emerged as useful techniques for discriminating retinal images.

View Article and Find Full Text PDF

Introduction: Neurodegenerative diseases, including Parkinson's, Alzheimer's, and epilepsy, pose significant diagnostic and treatment challenges due to their complexity and the gradual degeneration of central nervous system structures. This study introduces a deep learning framework designed to automate neuro-diagnostics, addressing the limitations of current manual interpretation methods, which are often time-consuming and prone to variability.

Methods: We propose a specialized deep convolutional neural network (DCNN) framework aimed at detecting and classifying neurological anomalies in MRI data.

View Article and Find Full Text PDF

Malaria is a major public health challenge in sub-Saharan Africa. Timely and accurate diagnosis of malaria is vital to reduce the caseload and mortality rates associated with malaria The use of microscopy in malaria screening is the gold standard recommended method by the World Health Organisation (WHO). In Uganda, utilization of microscopy is challenged by insufficient expertise to interpret the images accurately, affecting the efficiency, effectiveness and accuracy of malaria detection and diagnosis.

View Article and Find Full Text PDF

Glaucoma, a severe eye disease leading to irreversible vision loss if untreated, remains a significant challenge in healthcare due to the complexity of its detection. Traditional methods rely on clinical examinations of fundus images, assessing features like optic cup and disc sizes, rim thickness, and other ocular deformities. Recent advancements in artificial intelligence have introduced new opportunities for enhancing glaucoma detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!