The surface of all animal cells is coated with a layer of carbohydrates linked in various ways to the outer side of the plasma membrane. These carbohydrates are mainly bound to proteins in the form of glycoproteins and proteoglycans and together with the glycolipids constitute the so-called glycocalyx. In particular, the endothelial glycocalyx that covers the luminal layer of the endothelium is composed of glycosaminoglycans (heparan sulphate -HS and hyaluronic acid -HA), proteoglycans (syndecans and glypicans) and adsorbed plasma proteins. Thanks to its ability to absorb water, this structure contributes to making the surface of the vessels slippery but at the same time acts by modulating the mechano-transduction of the vessels, the vascular permeability and the adhesion of leukocytes in thus regulating several physiological and pathological events. Among the various enzymes involved in the degradation of the glycocalyx, heparanase (HPSE) has been shown to be particularly involved. This enzyme is responsible for the cutting of heparan sulfate (HS) chains at the level of the proteoglycans of the endothelial glycocalyx whose dysfunction appears to have a role in organ fibrosis, sepsis and viral infection. In this mini-review, we describe the mechanisms by which HPSE contributes to glycocalyx remodeling and then examine the role of glycocalyx degradation in the development of pathological conditions and pharmacological strategies to preserve glycocalyx during disease pathogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749438 | PMC |
http://dx.doi.org/10.1016/j.mbplus.2021.100097 | DOI Listing |
Hypertension
January 2025
Division of Obstetrics and Gynecology, Institute of Clinical Sciences Lund, Lund University, Sweden. (C.E., F.P., L.E., S.R.H.).
Background: Preeclampsia is a hypertensive pregnancy disorder marked by endothelial damage. Healthy endothelium is covered by a protective glycocalyx layer, which, when degraded, releases detectable products into the blood. Sphingosine-1-phosphate (S1P) is a cardiovascular biomarker involved in glycocalyx preservation, linked to placentation and preeclampsia development.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Gronostajowa 7, Kraków 30-387, Poland. Electronic address:
Sterile inflammation contributes to the development of many liver diseases including non-alcoholic fatty liver disease. Tumor necrosis factor alpha (TNFα) is a key cytokine driving liver inflammation primarily through pro-inflammatory activation of liver sinusoidal endothelial cells (LSEC). The knowledge of whether modulating LSEC activation can alleviate liver inflammation is scarce.
View Article and Find Full Text PDFTransplant Proc
January 2025
Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic; Department of Anaesthesiology and Intensive Care, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic; Faculty of Health Studies, Technical University in Liberec, Liberec, Czech Republic.
Background: The process of kidney transplantation remains the optimal treatment for end-stage renal disease, offering improved quality of life and increased survival rates compared to long-term dialysis. However, despite advances in surgical techniques, immunosuppression regimens, and post-operative care, there are still significant challenges in predicting the organ's status and long-term outcomes of transplantation. Among the many factors that influence graft survival, the quality of the donated organ plays a fundamental role.
View Article and Find Full Text PDFCardiol Rev
January 2025
From the Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX.
The vascular endothelium and its endothelial glycocalyx contribute to the protection of the endothelial cells from exposure to high levels of sodium and help these structures maintain normal function by regulating vascular permeability due to its buffering effect. The endothelial glycocalyx has negative surface charges that bind sodium and limit sodium entry into cells and the interstitial space. High sodium levels can disrupt this barrier and allow the movement of sodium into cells and extravascular fluid.
View Article and Find Full Text PDFNPJ Syst Biol Appl
January 2025
BIH Center for Regenerative Therapies (BCRT), Julius Wolff Institute (JWI), and Berlin Institute of Health (BIH); all Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 10117, Berlin, Germany.
Coronavirus disease 2019 (COVID-19) presents a wide spectrum of symptoms, the causes of which remain poorly understood. This study explored the associations between autoantibodies (AABs), particularly those targeting G protein-coupled receptors (GPCRs) and renin‒angiotensin system (RAS) molecules, and the clinical manifestations of COVID-19. Using a cross-sectional analysis of 244 individuals, we applied multivariate analysis of variance, principal component analysis, and multinomial regression to examine the relationships between AAB levels and key symptoms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!