Chemical sensors based on mesoporous silica nanotubes (MSNTs) for the quick detection of Fe(III) ions have been developed. The nanotubes' surface was chemically modified with phenolic groups by reaction of the silanol from the silica nanotubes surface with 3-aminopropyltriethoxysilane followed by reaction with 3-formylsalicylic acid (3-fsa) or 5-formylsalicylic acid (5-fsa) to produce the novel nanosensors. The color of the resultant 3-fsa-MSNT and 5-fsa-MSNT sensors changes once meeting a very low concentration of Fe(III) ions. Color changes can be seen by the naked eye and tracked with a smartphone or fluorometric or spectrophotometric techniques. Many experimental studies have been conducted to find out the optimum conditions for colorimetric and fluorometric determining of the Fe(III) ions by the two novel sensors. The response time, for the two sensors, that is necessary to achieve a steady spectroscopic signal was less than 15 s. The suggested methods were validated in terms of the lowest limit of detection (LOD), the lowest limit of quantification (LOQ), linearity, and precision according to International Conference on Harmonization (ICH) guidelines. The lowest limit of detection that was obtained from the spectrophotometric technique was 18 ppb for Fe(III) ions. In addition, the results showed that the two sensors can be used eight times after recycling using 0.1 M EDTA as eluent with high efficiency (90%). As a result, the two sensors were successfully used to determine Fe(III) in a variety of real samples (tap water, river water, seawater, and pharmaceutical samples) with great sensitivity and selectivity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8756786 | PMC |
http://dx.doi.org/10.1021/acsomega.1c05899 | DOI Listing |
J Environ Sci (China)
July 2025
Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
Siderite tailings is a potentially cost-free iron (Fe) source for arsenic (As) fixation in hazardous arsenic-calcium residues (ACR) as stable scorodite. In this study, a pure siderite reagent was employed to investigate the mechanism and optimal conditions for As fixation in ACR via scorodite formation, while the waste siderite tailings were used to further demonstrate the cotreatment method. The cotreatment method starts with an introduction of sulfuric acid to the ACR for As extraction and gypsum precipitation, and is followed by the addition of HO to oxidize As(III) in the extraction solutions and finalized by adding siderite with continuous air injection for scorodite formation.
View Article and Find Full Text PDFEnviron Res
January 2025
Ministry of Ecology and Environment South China Institute of Environmental Sciences, Guangzhou 510655, China; Key Laboratory of Water Environmental Simulation and Pollution Control, Ministry of Ecology and Environment, Guangzhou 510655, China. Electronic address:
Iron-activated peroxyacetic acid (PAA) represents an innovative advanced oxidation process (AOP). However, the efficiency of PAA activation by Fe(III) is often underestimated due to the widespread assumption that Fe(III) exhibits much lower ability than Fe(II) to activate PAA. Herein, the oxidative degradation of Rhodamine B (RhB) by Fe(III)-activated PAA process was investigated, and some new insights into the performance and mechanism of the Fe(III)/PAA system were presented.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
The complex pollution and nutrient-poor characteristics of surface waters result in the limited ability of conventional reactors to remove pollutants. In this study, a novel modified ceramsite material, modified with trivalent iron (Fe(III)) and fulvic acid (FA) to form ceramsite@Fe(III)@FA (HC), was used for the first time as a biocarrier to immobilize strain Cupriavidus sp. W12, constructing a biofilter to enhance nitrate (NO-N) removal in micro-polluted water.
View Article and Find Full Text PDFR Soc Open Sci
January 2025
Department of Experimental Physics, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic.
Gold-silver synergism has been well documented in many scientific works dealing with luminescent nanostructures that are exploitable in biomedical and environmental application. Frequently, the ratio of Au : Ag in synthetic mixtures was varied to influence the extent of Au-Ag synergism of the resulting luminescent gold-silver nanoclusters (GSNCs). However, in our approach, a new step, maturing under differing conditions using the same Au : Ag ratio (5 : 1), has been investigated systematically for the very first time.
View Article and Find Full Text PDFAn Acad Bras Cienc
January 2025
Universidade Federal do Pará, Instituto de Ciências Exatas e Naturais, Laboratório de Investigação Sistemática em Biotecnologia e Biodiversidade Molecular, Rua Augusto Corrêa, 01, 66075-110 Belém, PA, Brazil.
In the present study, 5-Hydroxy-2-(Oleoyloxymethyl) -4H-pyran-4-one (KMO 3), and their chelated with Cu(II) and Fe(III) ions were synthesized to explore their inhibitory activity against tyrosinase and cytotoxicity. To this end, the structures of the obtained compounds were confirmed by ATR/FT-IR, 13C and 1H-NMR, and UV-vis techniques. The results show that chelating fatty ester presents the bands at 1567m, 1511w cm-1 attributed to the coordinated carbonyl (Cu(II)←[O=C]2), and the bands at 1540m, 1519m cm-1 which were attributed to the coordinated carbonyl (Fe(III)←[O=C]3).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!