Nitroaromatic explosives are a class of compounds that are responsible for various health hazards and terrorist outrages. Among these, sensitive detection of 2,4,6-trinitrophenol (TNP) explosive has always been highly desirable considering public health and national security. In this regard, three fluorene-based conjugated polymers (, , and ) were synthesized through the Suzuki-Miyaura coupling reaction and were found to be highly sensitive for fluorescence detection of TNP with detection limits of 3.2, 5.7, and 6.1 pM, respectively. Excellent selectivity of CPs toward TNP was attributed to their unique π-π interactions based on fluorescence studies and density functional theory (DFT) calculations. The high sensitivity of CPs to TNP was attributed to the static quenching mechanism based on the photoinduced electron transfer process and was evaluated by fluorescence, UV-visible absorption, dynamic light scattering, Job's plots, the Benesi-Hildebrand plots, and DFT calculations. CPs were also used for colorimetric and real-water sample analysis for the detection of TNP explosive. Meanwhile, sensor-coated test strips were fabricated for on-site detection of TNP, which makes them convenient solid-supported sensors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8757457 | PMC |
http://dx.doi.org/10.1021/acsomega.1c05644 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!