Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, lead zirconate titanate (PZT) ceramic particles were added for further improvement. PZT belongs to the perovskite family and exhibits good piezoelectricity. Thus, it was added in this experiment to enhance the piezoelectric response of the poly(vinylidenefluoride--trifluoroethylene) (PVDF-TrFE) copolymer, which produced a voltage output of 1.958 V under a cyclic pressure of 290 N. In addition, to further disperse the PZT particles in the PVDF-TrFE matrix, tetradecylphosphonic acid (TDPA) was synthesized and employed to modify the PZT surface, after which the surface-modified PZT (m-PZT) particles were added to the PVDF-TrFE matrix. The TDPA on the PZT surface made it difficult for the particles to aggregate, allowing them to disperse in the polymer solution more stably. In this way, the PZT particles with piezoelectric responses could be uniformly dispersed in the PVDF-TrFE film, thereby further enhancing its overall piezoelectric response. The test results showed that upon the addition of 10 wt % m-PZT, the piezoelectric coefficient of m-PZT/PVDF-TrFE 10 wt % was 27 pC/N; and under a cyclic pressure of 290 N, the output voltage reached 3.426 V, which demonstrated a better piezoelectric response than the polymer film with the original PZT particles. Furthermore, the piezoelectric coefficient of m-PZT/PVDF-TrFE 10 wt % was 27.1 pC/N. This was exhibited by maintaining a piezoelectric coefficient of 26.8 pC/N after 2000 cycles. Overall, a flexible piezoelectric film with a high piezoelectric coefficient was prepared by following a simple fabrication process, which showed that this film possesses great commercial potential.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8756600 | PMC |
http://dx.doi.org/10.1021/acsomega.1c05451 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!