The results of conventional gene-based analyses which combine epigenome and transcriptome data, including those conducted by the ENCODE/modENCODE projects, suggest various histone modifications performing regulatory functions in controlling mRNA expression (referred to as a histone code) in several model animals. While some histone codes were found to be universally adopted across organisms, "species-specific" histone codes have also been defined. We found that the characterization of these histone codes was confounded by factors (e.g. gene essentiality, expression breadth) that are independent of, but correlated with, gene expression levels. Hence, we attempted to decode histone marks in mouse (), fly (), and worm () genomes by examining ratios of RNA sequencing (and chromatin immunoprecipitation sequencing) intensities between paralog genes to remove confounding effects that would otherwise be present in a gene-based approach. With this paralog-based approach, associations between four histone modifications (H3K4me3, H3K27ac, H3K9ac, and H3K36me3) and gene expression are substantially revised. For example, we demonstrate that H3K27ac and H3K9ac represent universal active marks in promoters, rather than worm-specific marks as previously reported. Second, acting regions of the studied active marks that are common across species (and across a wide range of tissues at different developmental stages) were found to extend beyond the previously defined regions. Thus, it appears that the active histone codes analyzed have a universality that has previously been underappreciated. Our results suggested that these universal codes, including those previously considered species-specific, could have an ancient origin, and are important in regulating animal gene expression abundance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8741409 | PMC |
http://dx.doi.org/10.1016/j.csbj.2021.12.027 | DOI Listing |
Viruses
November 2024
State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
Kaposi's sarcoma-associated herpesvirus (KSHV), a γ-herpesvirus, is predominantly associated with Kaposi's sarcoma (KS) as well as two lymphoproliferative disorders: primary effusion lymphoma (PEL) and multicentric Castleman disease (MCD). Like other herpesviruses, KSHV employs two distinct life cycles: latency and lytic replication. To establish a lifelong persistent infection, KSHV has evolved various strategies to manipulate the epigenetic machinery of the host.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia.
has two paralogs, and , related to the evolutionarily conserved family genes. In mammals, the family consists of , encoding transcription co-factors involved in the regulation of development and cell fate determination. The function of and in remains unclear.
View Article and Find Full Text PDFMedicina (Kaunas)
November 2024
Respiratory Disease Unit, University Hospital of Modena, 41124 Modena, Italy.
Recent advances in genetics and epigenetics have provided critical insights into the pathogenesis of both idiopathic and non-idiopathic interstitial lung diseases (ILDs). Mutations in telomere-related genes and surfactant proteins have been linked to familial pulmonary fibrosis, while variants in MUC5B and TOLLIP increase the risk of ILD, including idiopathic pulmonary fibrosis and rheumatoid arthritis-associated ILD. Epigenetic mechanisms, such as DNA methylation, histone modifications, and non-coding RNAs such as miR-21 and miR-29, regulate fibrotic pathways, influencing disease onset and progression.
View Article and Find Full Text PDFBiol Sex Differ
January 2025
Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.
Background: X chromosome inactivation (XCI) is a female-specific process in which one X chromosome is silenced to balance X-linked gene expression between the sexes. XCI is initiated in early development by upregulation of the lncRNA Xist on the future inactive X (Xi). A subset of X-linked genes escape silencing and thus have higher expression in females, suggesting female-specific functions.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
January 2025
Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA. Electronic address:
Autosomal dominant polycystic kidney disease (ADPKD) is the fourth leading cause of end-stage renal disease, contributing substantially to patient morbidity, mortality, and healthcare system strain. Emerging research highlights a pivotal role of epigenetics in ADPKD's pathophysiology, where mechanisms like DNA methylation, histone modifications, and non-coding RNA regulation significantly impact disease onset and progression. These epigenetic factors influence gene expression and regulate key processes involved in cyst formation and expansion, fibrosis, and inflammatory infiltration, thus accelerating ADPKD progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!