AI Article Synopsis

Article Abstract

Unlabelled: Understanding how ecosystem services (ES) and ecosystem disservices (EDS) are affected by human-induced landscape changes is important to minimise trade-offs and maximise synergies between Sustainable Development Goals (SDGs) and targets, and for equitable development across governance scales. However, limited research investigates how ES and EDS can change under past, current, and future land uses. This study, conducted in the Luanhe River Basin (LRB), demonstrates the interaction between humans and the environment under past, current, and future land uses at the river basin scale in China, using a stakeholders' participatory capacity matrix to characterise both ES and EDS. Results indicate that forests and water bodies provided the highest overall ES capacity, while the lowest scores were reached in built-up and unused land areas. Built-up land and cropland provided the highest overall EDS, while the lowest EDS scores were for water bodies. By applying the ecosystem services potential index (ESPI) and ecosystem disservices potential index (EDSPI), we found that the ESPI of all the ES declined from 1980 to 2018 and would continue to decline until 2030 without sustainable and conservation development strategies in the LRB. The EDSPI under all future scenarios in 2030 was projected to increase compared to the baseline in 1980. This study recommends establishing and implementing sustainable environmental protection policies and cross-regional and trans-provincial eco-compensation schemes for minimising trade-offs in ES. The study proposes an integrated research framework that could be useful for understanding the effect of historical and future human-environment interactions on ES and EDS, and SDGs achievement.

Supplementary Information: The online version contains supplementary material available at 10.1007/s11625-021-01078-8.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8741573PMC
http://dx.doi.org/10.1007/s11625-021-01078-8DOI Listing

Publication Analysis

Top Keywords

ecosystem services
12
river basin
12
current future
12
future land
12
luanhe river
8
sustainable development
8
development goals
8
ecosystem disservices
8
water bodies
8
provided highest
8

Similar Publications

Metal Mobilization from Thawing Permafrost Is an Emergent Risk to Water Resources.

ACS ES T Water

January 2025

Department of Geological Sciences, University of Saskatchewan, 114 Science Pl, Saskatoon, Saskatchewan, Canada, S7N 5E2.

Metals are ubiquitous in Earth's Critical Zone and play key roles in ecosystem function, human health, and water security. They are essential nutrients at low concentrations, yet some metals are toxic at a high dose. Permafrost thaw substantially alters all the physical and chemical processes governing metal mobility, including water movement and solute transport and (bio)geochemical interactions involving water, organic matter, minerals, and microbes.

View Article and Find Full Text PDF

Quantifying ecosystem services provided by mobile species like insectivorous bats remains a challenge, particularly in understanding where and how these services vary over space and time. Bats are known to offer valuable ecosystem services, such as mitigating insect pest damage to crops, reducing pesticide use, and reducing nuisance pest populations. However, determining where bats forage is difficult to monitor.

View Article and Find Full Text PDF

Wetlands are a crucial component of the earth's socio-ecological structure, providing significant ecosystem services to people. Changes in wetlands, driven by both natural and manmade causes, are altering these ecosystem services. Although Bangladesh is developing, natural resources like wetlands are changing in the country at different scales, with urban areas experiencing significant impacts.

View Article and Find Full Text PDF

Corrigendum to "Stockpiling turf alters microbial carbon and nitrogen use efficiency on the Tibetan Plateau" [Science of the Total Environment 947 (2024) 1-9/174548].

Sci Total Environ

January 2025

China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China. Electronic address:

View Article and Find Full Text PDF

Multi-scale urban ecosystem service changes and their impact mechanisms on human well-being.

J Environ Manage

January 2025

State Key Laboratory of Earth Surface Processes and Resource Ecology (ESPRE), Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Qinghai Normal University, Xining, 810016, China. Electronic address:

With increasing urbanization pressures, there is an urgent need to improve the urban residents' well-being and achieve the sustainable development goals (SDGs). Ecosystem services (ESs) are vital for human well-being (HW) and survival, providing essential benefits like clean water while supporting the SDGs. However, understanding the impact mechanism of urban ESs on the HW under the framework of the SGDs in a changing world remains challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!