A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

: a hybrid deep neural model with mixed fusion for rumour detection in social data streams. | LitMetric

The unrelenting trend of doctored narratives, content spamming, fake news and rumour dissemination on social media can lead to grave consequences that range from online intimidating and trolling to lynching and riots in real- life. It has therefore become vital to use computational techniques that can detect rumours, do fact-checking and inhibit its amplification. In this paper, we put forward a model for rumour detection in streaming data on social platforms. The proposed model is a hybrid deep neural model that combines the predictions of a hierarchical attention network (HAN) and a multi-layer perceptron (MLP) learned using context-based (text + meta-features) and user-based features, respectively. The concatenated context feature vector is generated using feature-level fusion strategy to train HAN. Eventually, a decision-level late fusion strategy using logical OR combines the individual classifier prediction and outputs the final label as rumour or non-rumour. The results demonstrate improved performance to the existing state-of-the-art approach on the benchmark PHEME dataset with a 4.45% gain in -score. The model can facilitate well-time intervention and curtail the risk of widespread rumours in streaming social media by raising an alert to the moderators.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8741553PMC
http://dx.doi.org/10.1007/s00521-021-06743-8DOI Listing

Publication Analysis

Top Keywords

hybrid deep
8
deep neural
8
neural model
8
rumour detection
8
social media
8
fusion strategy
8
model
5
model mixed
4
mixed fusion
4
rumour
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!