Background: The effects of the key pathogens and virulence factors associated with gum disease such as Porphyromonas gingivalis (P. gingivalis) on the central nervous system is of great interest with respect to development of neuropathologies and hence therapeutics and preventative strategies. Chronic infections and associated inflammation are known to weaken the first line of defense for the brain, the blood-brain barrier (BBB).
Objective: The focus of this study is to utilize an established human in vitro BBB model to evaluate the effects of P. gingivalis virulence factors lipopolysaccharide (LPS) and outer membrane vesicles (OMVs) on a primary-derived human model representing the neurovascular unit of the BBB.
Methods: Changes to the integrity of the BBB after application of P. gingivalis LPS and OMVs were investigated and correlated with transport of LPS. Additionally, the effect of P. gingivalis LPS and OMVs on human brain microvascular endothelial cells in monolayer was evaluated using immunofluorescence microscopy.
Results: The integrity of the BBB model was weakened by application of P. gingivalis LPS and OMVs, as measured by a decrease in electrical resistance and a recovery deficit was seen in comparison to the controls. Application of P. gingivalis OMVs to a monoculture of human brain microvascular endothelial cells showed disruption of the tight junction zona occludens protein (ZO-1) compared to controls.
Conclusion: These findings show that the integrity of tight junctions of the human BBB could be weakened by association with P. gingivalis virulence factors LPS and OMVs containing proteolytic enzymes (gingipains).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/JAD-215054 | DOI Listing |
BMC Microbiol
December 2024
Jiang Xi Hospital of China-Japan Friendship Hospital, Nanchang, Jiangxi, 330052, P.R. China.
Background: Extracellular vesicles (EVs) play a crucial role in intraspecies and interspecies communication, significantly influencing physiological and pathological processes. Outer membrane vesicles (OMVs) secreted by Gram-negative bacteria are rich in components from the parent cells and are important for bacterial communication, immune evasion, and pathogenic mechanisms. However, the extraction and purification of OMVs face numerous challenges due to their small size and heterogeneity.
View Article and Find Full Text PDFAnal Chem
December 2024
Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China.
Outer membrane vesicles (OMVs) secreted by bacteria are emerging diagnostic markers for bacterial infection or disease detection due to their carriage of various signaling molecules. However, actual biological samples of patients are extremely complex, and applying OMVs to clinical diagnosis remains a major challenge. One of the major challenges is that there are still great difficulties in the enrichment of OMVs including tedious steps and lower concentration.
View Article and Find Full Text PDFUnlabelled: is a family of double stranded RNA (dsRNA) phage that infects various strains of , a Gram-negative soil bacteria known to infect various crops. Surrounding the icosahedral capsids of these phages is a bacterial derived phospholipid membrane. Embedded within this membrane is a multi-component protein complex, referred to as the spike complex.
View Article and Find Full Text PDFNat Commun
August 2024
Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA.
Outer membrane vesicles (OMVs) produced by Gram-negative bacteria have key roles in cell envelope homeostasis, secretion, interbacterial communication, and pathogenesis. The facultative intracellular pathogen Salmonella Typhimurium increases OMV production inside the acidic vacuoles of host cells by changing expression of its outer membrane proteins and modifying the composition of lipid A. However, the molecular mechanisms that translate pH changes into OMV production are not completely understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!