Vaccination guidelines for dogs and cats indicate that core vaccines (for dogs, rabies, distemper, adenovirus, parvovirus; for cats, feline parvovirus, herpes virus-1, calicivirus) are essential to maintain health, and that non-core vaccines be administered according to a clinician's assessment of a pet's risk of exposure and susceptibility to infection. A reliance on individual risk assessment introduces the potential for between-practice inconsistencies in non-core vaccine recommendations. A study was initiated to determine non-core vaccination rates of dogs (Leptospira, Borrelia burgdorferi, Bordetella bronchiseptica, canine influenza virus) and cats (feline leukemia virus) in patients current for core vaccines in veterinary practices across the United States. Transactional data for 5,531,866 dogs (1,670 practices) and 1,914,373 cats (1,661 practices) were retrieved from practice management systems for the period November 1, 2016 through January 1, 2020, deidentified and normalized. Non-core vaccination status was evaluated in 2,798,875 dogs and 788,772 cats that were core-vaccine current. Nationally, median clinic vaccination rates for dogs were highest for leptospirosis (70.5%) and B. bronchiseptica (68.7%), and much lower for canine influenza (4.8%). In Lyme-endemic states, the median clinic borreliosis vaccination rate was 51.8%. Feline leukemia median clinic vaccination rates were low for adult cats (34.6%) and for kittens and 1-year old cats (36.8%). Individual clinic vaccination rates ranged from 0 to 100% for leptospirosis, B. bronchiseptica and feline leukemia, 0-96% for canine influenza, and 0-94% for borreliosis. Wide variation in non-core vaccination rates between clinics in similar geographies indicates that factors other than disease risk are driving the use of non-core vaccines in pet dogs and cats, highlighting a need for veterinary practices to address gaps in patient protection. Failure to implement effective non-core vaccination strategies leaves susceptible dogs and cats unprotected against vaccine-preventable diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vaccine.2022.01.003 | DOI Listing |
Viruses
January 2025
Bioinformatics and Biotechnology Laboratory, Campus of Gurupi, Federal University of Tocantins, Gurupi 77410-570, Brazil.
SARS-CoV-2, the virus responsible for COVID-19, has undergone significant genetic evolution since its emergence in 2019. This study examines the genomic diversity of SARS-CoV-2 in Brazil after the worst phase of the pandemic, the wider adoption of routine vaccination, and the abolishment of other non-pharmacological preventive measures from July 2022 to July 2024 using 55,951 sequences retrieved from the GISAID database. The analysis focuses on the correlation between confirmed COVID-19 cases, sequencing efforts across Brazilian states, and the distribution and evolution of viral lineages.
View Article and Find Full Text PDFViruses
December 2024
Instituto de Investigación Sanitaria Aragón, 50009 Zaragoza, Spain.
This study explores the relationship between specific SARS-CoV-2 mutations and obesity, focusing on how these mutations may influence COVID-19 severity and outcomes in high-BMI individuals. We analyzed 205 viral mutations from a cohort of 675 patients, examining the association of mutations with BMI, hospitalization, and mortality rates. Logistic regression models and statistical analyses were applied to assess the impact of significant mutations on clinical outcomes, including inflammatory markers and antibody levels.
View Article and Find Full Text PDFPathogens
January 2025
Department of Biomedical Sciences, Parasitology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia.
Malaria remains a critical global health issue due to high mortality rates, drug resistance, and low treatment efficacy. The genetic variability of proteins complicates the development of long-lasting immunity, as it impedes the human immune system's ability to sustain effective responses. T cells play a crucial role in combating malaria, but the parasite's complex life cycle-spanning liver and blood stages-presents significant challenges in effectively activating and targeting these cells.
View Article and Find Full Text PDFPathogens
January 2025
Department of Medical Microbiology, Faculty of Medicine, Sakarya University, 54100 Sakarya, Turkey.
Rubella Virus, Cytomegalovirus (CMV), Herpes Simplex Virus-2 (HSV-2), Hepatitis B (HBV) and Hepatitis C virus (HCV) can cause serious fetal disease. The seropositivity rates of these agents vary among countries and geographic regions. This study aimed to analyze the prevalence rates and diagnostic methods used in studies investigating the seroprevalence of viral pathogens in the TORCH group among pregnant women in Turkey between 2005 and 2024.
View Article and Find Full Text PDFLife (Basel)
January 2025
Urology Department, Hospital Universitari de Mollet, 08100 Barcelona, Spain.
Background/objectives: Urinary tract infections (UTIs) caused by multidrug-resistant (MDR) bacteria pose a considerable challenge due to high treatment failure rates and associated healthcare costs. This pioneering study evaluates the effectiveness of personalized autovaccine therapy in managing recurrent UTIs in patients with MDR bacteria, aiming to offer an innovative treatment that reduces antibiotic resistance and hospitalizations.
Methods: In this prospective, single-center study, 40 patients with recurrent MDR UTIs received personalized sublingual autovaccines derived from their own bacterial isolates.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!