A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Left-censored recurrent event analysis in epidemiological studies: a proposal for when the number of previous episodes is unknown. | LitMetric

Background: When dealing with recurrent events in observational studies it is common to include subjects who became at risk before follow-up. This phenomenon is known as left censoring, and simply ignoring these prior episodes can lead to biased and inefficient estimates. We aimed to propose a statistical method that performs well in this setting.

Methods: Our proposal was based on the use of models with specific baseline hazards. In this, the number of prior episodes were imputed when unknown and stratified according to whether the subject had been at risk of presenting the event before t = 0. A frailty term was also used. Two formulations were used for this "Specific Hazard Frailty Model Imputed" based on the "counting process" and "gap time." Performance was then examined in different scenarios through a comprehensive simulation study.

Results: The proposed method performed well even when the percentage of subjects at risk before follow-up was very high. Biases were often below 10% and coverages were around 95%, being somewhat conservative. The gap time approach performed better with constant baseline hazards, whereas the counting process performed better with non-constant baseline hazards.

Conclusions: The use of common baseline methods is not advised when knowledge of prior episodes experienced by a participant is lacking. The approach in this study performed acceptably in most scenarios in which it was evaluated and should be considered an alternative in this context. It has been made freely available to interested researchers as R package miRecSurv.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8761288PMC
http://dx.doi.org/10.1186/s12874-022-01503-1DOI Listing

Publication Analysis

Top Keywords

prior episodes
12
subjects risk
8
risk follow-up
8
baseline hazards
8
performed better
8
left-censored recurrent
4
recurrent event
4
event analysis
4
analysis epidemiological
4
epidemiological studies
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!