Pulpitis is the inflammatory response of the dental pulp to a tooth insult, whether it is microbial, chemical, or physical in origin. It is traditionally referred to as reversible or irreversible, a classification for therapeutic purposes that determines the capability of the pulp to heal. Recently, new knowledge about dental pulp physiopathology led to orientate therapeutics towards more frequent preservation of pulp vitality. However, full adoption of these vital pulp therapies by dental practitioners will be achieved only following better understanding of cell and tissue mechanisms involved in pulpitis. The current narrative review aimed to discuss the contribution of the most significant experimental models developed to study pulpitis. Traditionally, in vitro two (2D)- or three (3D)-dimensional cell cultures or in vivo animal models were used to analyse the pulp response to pulpitis inducers at cell, tissue or organ level. In vitro, 2D cell cultures were mainly used to decipher the specific roles of key actors of pulp inflammation such as bacterial by-products, pro-inflammatory cytokines, odontoblasts or pulp stem cells. However, these simple models did not reproduce the 3D organisation of the pulp tissue and, with rare exceptions, did not consider interactions between resident cell types. In vitro, tissue/organ-based models were developed to better reflect the complexity of the pulp structure. Their major disadvantage is that they did not allow the analysis of blood supply and innervation participation. On the contrary, in vivo models have allowed researchers to identify key immune, vascular and nervous actors of pulpitis and to understand their function and interplay in the inflamed pulp. However, inflammation was mainly induced by iatrogenic dentine drilling associated with simple pulp exposure to the oral environment or stimulation by individual bacterial by-products for short periods. Clearly, these models did not reflect the long and progressive development of dental caries. Lastly, the substantial diversity of the existing models makes experimental data extrapolation to the clinical situation complicated. Therefore, improvement in the design and standardisation of future models, for example by using novel molecular biomarkers, databased models and artificial intelligence, will be an essential step in building an incremental knowledge of pulpitis in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/iej.13683 | DOI Listing |
Intensive Care Med Exp
January 2025
Department of Emergency Medicine in Linköping, and Department of Biomedical and Clinical Sciences, Linköping University, 582 25, Linköping, Sweden.
Background: This study aimed to investigate whether changes in capillary refill (CR) time precede macrovascular signs of deterioration in a human model of blood loss shock. The study was conducted at the Department of Emergency Medicine in Linköping, Sweden, and involved 42 healthy volunteers aged 18-45. Participants were randomized into two provocations of applied lower body negative pressure (LBNP): a stepwise escalation protocol and a direct application protocol, to simulate gradual and acute blood loss.
View Article and Find Full Text PDFLasers Med Sci
January 2025
Department of Endodontics, Faculty of Dentistry, Gülhane Faculty of Dentistry, University of Health Sciences, Ankara, Turkey.
Objective: This study aims to quantitatively compare the effects of standard needle irrigation (SNI), passive ultrasonic irrigation (PUI), EDDY, photon-initiated photoacoustic streaming (PIPS), and shock wave-enhanced emission photoacoustic streaming (SWEEPS) on the apical extrusion of irrigation solutions in teeth with severe canal curvature.
Materials And Methods: Seventy-five teeth with a single root and canal, and curvature angles ranging from 20° to 40°, were selected for this study. Root canal curvatures were measured from buccolingual and mesiodistal radiographs using ImageJ software (version 1.
Small
January 2025
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510000, China.
Degradable and cost-effective cellulose fiber-based materials are ideal substitutes for traditional plastics. However, organic additives used to enhance water and oil resistance often contain toxic substances that may migrate into food, posing health risks. In this study, inspired by tree structures, lignin-containing cellulose nanofibers (LCNFs) are used to form a "crown-roots" structure to enhance the water, oil, and gas resistance, as well as mechanical performance of composites.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China. Electronic address:
The efficient isolation and lignin stabilization are critical to the fractionation process of lignocellulosic biomass, enabling the subsequent valorization of both carbohydrates and lignin. In this study, a ternary deep eutectic solvent pretreatment system with outstanding reusability has been developed. Under optimal conditions (ChCl: MT: p-TsOH = 1:1:0.
View Article and Find Full Text PDFIndian J Clin Biochem
January 2025
Department of Biochemistry, College of Medicine and J.N.M Hospital, WBUHS, Kalyani, West Bengal 741235 India.
Radiation therapy uses ionizing radiation (IR) to kill cancer cells. However, during radiotherapy normal cells are also damaged and killed by the generation of reactive oxygen species. Polyphenolic compounds are known to mitigate the damaging effects of radiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!