A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Recycling of synthetic waste wig fiber in the production of cement-adobe for building envelope: physio-hydric properties. | LitMetric

Waste wigs are often disposed off in their volume on landfills, thus constituting a nuisance to the environment. Recycling these wigs in masonry bricks is a way via which they can be recycled and reused. On such premise, waste wig fiber (WWF) was recycled by incorporating into the cement-sand-clay composite mix for masonry bricks production. The challenges masonry bricks face include shrinkage and water susceptibility; hence, the contributory effect of WWF on physio-hydric properties was assessed in this study. Sample preparation entailed blending of cement, sand, clay soil, and waste wig fiber. The control mix was prepared by commixing clay with 10% cement (by clay volume) and 20% sand (by clay volume). Other mix proportions were reinforced with 1, 2, 3, 4, and 5% WWF by clay volume. Prepared composite brick samples were cured for 28 and 56 days and tested for physio-hydric properties. Results revealed WWF contributed significantly in improving hydro-resisting properties by minimizing porosity, water and moisture absorption, capillary suction, and water permeability. Furthermore, WWF contributed to dimensional stability by reducing shrinkages and weight loss. Hydration time impacts significantly in reducing apparent porosity, water permeability coefficient, moisture and water absorption, and capillary suction coefficient and increasing apparent density, weight loss, linear, and volumetric shrinkage. The general outcome depicts that WWF showed promising performance in bricks developed in enhancing water and moisture susceptibility resistance and promoting mass and dimensional stability, hence can be employed in reinforcing cement adobe bricks at an optimum mix of 5% vol fraction.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-022-18649-6DOI Listing

Publication Analysis

Top Keywords

waste wig
12
wig fiber
12
physio-hydric properties
12
masonry bricks
12
clay volume
12
sand clay
8
wwf contributed
8
porosity water
8
water moisture
8
absorption capillary
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!