Herein, bio-based alginates (Alg) containing metallic beads (Ce and Cu) were synthesized via an alginate cross-linking method, and their properties were studied using experimental techniques combined with theoretical simulations. Materials were characterized through Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscope (SEM) images, to determine the cross-linking structural features, thermal stability, and surface morphology of alginates. Besides, density functional theory (DFT) methods were employed to calculate global reactivity parameters such as HOMO-LUMO gap energies (ΔE), electronegativity (χ), hardness (η), and electrophilic and nucleophilic indicators, using both gas and aqueous media for the study of the complexation process. Among other features, characterization of the thermal properties showed that Alg@Ce and Alg@Cu alginate beads behave differently as a function of the temperature. This behavior was also predicted by the conformation energy differences between Alg@Ce and Alg@Cu, which were found out theoretically and explained with the combined study of the vibrational modes between the carboxylate group with either Ce or Cu. Overall, the reactivity of the Alg@Ce alginate bead was higher than that of the Alg@Cu counterpart, results could be used as a cornerstone to employed the materials here studied in a wide range of applications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-022-05028-8DOI Listing

Publication Analysis

Top Keywords

study vibrational
8
thermal properties
8
alg@ce alg@cu
8
comparison green
4
green bio-based
4
bio-based cerium/alginate
4
cerium/alginate copper/alginate
4
copper/alginate beads
4
beads study
4
vibrational thermal
4

Similar Publications

Predicting Sensory and Affective Tactile Perception from Physical Parameters Obtained by Using a Biomimetic Multimodal Tactile Sensor.

Sensors (Basel)

December 2024

Department of Applied Chemistry, Chemical Engineering, and Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa 992-8510, Yamagata, Japan.

Tactile perception plays a crucial role in the perception of products and consumer preferences. This perception process is structured in hierarchical layers comprising a sensory layer (soft and smooth) and an affective layer (comfort and luxury). In this study, we attempted to predict the evaluation score of sensory and affective tactile perceptions of materials using a biomimetic multimodal tactile sensor that mimics the active touch behavior of humans and measures physical parameters such as force, vibration, and temperature.

View Article and Find Full Text PDF

Improved Intelligent Condition Monitoring with Diagnostic Indicator Selection.

Sensors (Basel)

December 2024

Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, 30-059, Krakow, Poland.

In this study, a predictive maintenance (PdM) system focused on feature selection for the detection and classification of simulated defects in wind turbine blades has been developed. Traditional PdM systems often rely on numerous, broadly chosen diagnostic indicators derived from vibration data, yet many of these features offer little added value and may even degrade model performance. General feature selection methods might not be suitable for PdM solutions, as information regarding observed faults is often misinterpreted or lost.

View Article and Find Full Text PDF

People with fibromyalgia syndrome (FMS) may have difficulty attending rehabilitation sessions. We investigated the feasibility (adherence and satisfaction) of implementing an 8-week home-based somatosensory, entirely remote, self-training programme using the TrainPain smartphone app in people with FMS. The secondary aim was to evaluate the effect on pain symptoms.

View Article and Find Full Text PDF

A rapidly growing body of experimental evidence in the literature shows that the effects of humans interacting with vibrating structures, other humans, and their surrounding environment can be critical for reliable estimation of structural vibrations. The Interaction-based Vibration Serviceability Assessment framework (I-VSA) was proposed by the authors in 2017 to address this, taking into account human-structure dynamic interactions (HSI) to simulate the structural vibrations experienced by each occupant/pedestrian. The I-VSA method, however, had limited provisions to simulate simultaneously multiple modes of structure in HSI, to simulate human-human and human-environment interactions, and the movement pattern of the occupants/pedestrians.

View Article and Find Full Text PDF

Study on the Mechanism of Energy Dissipation in Hemispherical Resonator Gyroscope.

Sensors (Basel)

December 2024

Space Control and Inertial Technology Research Center, Harbin Institute of Technology, Harbin 150080, China.

The hemispherical resonator gyroscope is a gyroscope based on the principle of Coriolis vibration, widely used in inertial measurement systems of spacecraft. This article decomposes the gyroscope into two parts: the resonator shell and the gyroscope head, establishes the energy dissipation mechanism of the gyroscope, and conducts experimental verification. Firstly, based on the working principle of the gyroscope, a mechanical analysis model of the hemispherical resonator gyroscope head with a resonator spherical shell containing quality defects under second-order vibration state was established.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!