AI Article Synopsis

  • - The study focuses on circ_0003159, a circular RNA, and its role in gastric cancer (GC), which is a significant cause of cancer-related deaths, finding that its expression is decreased in GC tissues and cells.
  • - Overexpressing circ_0003159 leads to reduced cancer cell viability, migration, invasion, and glycolysis, while promoting cell apoptosis, indicating its potential as a tumor suppressor.
  • - Circ_0003159 inhibits the activity of miR-221-3p and miR-222-3p, which affects the expression of leukemia inhibitory factor receptor (LIFR); targeting these microRNAs enhances the tumor-suppressive effects of circ_0003159 in GC.

Article Abstract

Gastric cancer (GC) remains a major cause of cancer-related deaths. Increasing studies suggest that cancer development is accompanied by the deregulation of circular RNAs. We investigated the function of circ_0003159 in GC. The expression levels of circ_0003159, miR-221-3p/miR-222-3p and leukemia inhibitory factor receptor (LIFR) mRNA were measured by real-time quantitative polymerase chain reaction. Cell colony formation ability was assessed by colony formation assay, and cell viability was assessed by cell counting kit-8 assay. Cell apoptosis was assessed by flow cytometry assay and caspase3 activity. Cell migration and invasion were assessed by transwell assay. Glycolysis energy metabolism was assessed by 5'-triphosphate production, glucose uptake and lactate production. The protein levels of related marker proteins and LIFR were detected by western blot. The relationship between circ_0003159 and miR-221-3p/miR-222-3p, or LIFR and miR-221-3p/miR-222-3p was obtained from bioinformatics tools and verified by dual-luciferase reporter assay. A cancer tumorogenicity xenograft experiment in nude mice was conducted to determine the role of circ_0003159 in tumor growth by AGS cells. Our results showed that circ_0003159 expression was decreased in GC tissues and cells. Circ_0003159 overexpression sequestered GC cell viability, migration, invasion and glycolysis and induced cell apoptosis. MiR-221-3p and miR-222-3p were targets of circ_0003159, and the inhibition of miR-221-3p and miR-222-3p also blocked GC cell viability, migration, invasion and glycolysis and promoted cell apoptosis. LIFR was a common target of miR-221-3p and miR-222-3p. Interestingly, LIFR knockdown reversed the effects of circ_0003159 overexpression on GC cell behaviors. Circ_0003159 increased the expression level of LIFR by targeting miR-221-3p and miR-222-3p. The tumorigenicity assay showed that circ_0003159 overexpression inhibited tumor growth in vivo. In conclusion, circ_0003159 inhibited GC development in vitro and in vivo by enriching the level of LIFR via direct binding to miR-221-3p/miR-222-3p.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10735-021-10044-8DOI Listing

Publication Analysis

Top Keywords

mir-221-3p mir-222-3p
16
circ_0003159
12
cell viability
12
cell apoptosis
12
migration invasion
12
circ_0003159 overexpression
12
cell
10
lifr
8
binding mir-221-3p/mir-222-3p
8
gastric cancer
8

Similar Publications

MicroRNAs in seminal plasma are able to discern infertile men at increased risk of developing testicular cancer.

Mol Oncol

December 2024

Section of Biology and Genetics "G. Sichel", Department of Biomedical and Biotechnological Sciences, University of Catania, Italy.

Male infertility is a risk factor for the development of testicular germ cell tumors. In this study, we investigated microRNA profiles in seminal plasma to identify potential noninvasive biomarkers able to discriminate the men at highest risk of developing cancer among the infertile population. We compared the microRNA profiles of individuals affected by testicular germ cell tumors and healthy individuals with normal or impaired spermiograms using high-throughput technology and confirmed the results by single-assay digital PCR.

View Article and Find Full Text PDF

Screening and Studying of Blood miRNAs as Potential Diagnostic Markers for Papillary Thyroid Carcinoma.

Onco Targets Ther

December 2024

Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Jinan, 250012, People's Republic of China.

Objective: MiRNAs play a pivotal role in tumorigenesis and development by exerting negative regulation on the expression of target genes. In this study, bioinformatics techniques and online database were employed to investigate the specific miRNA-target gene regulatory network in PTC, which was subsequently validated using human blood samples and compared to existing tumor markers.

Methods: The miRNA (GSE50901) and Gene Expression (GSE113629) chip screening data of human PTC tissues were retrieved from GEO database.

View Article and Find Full Text PDF

Extracellular vesicles derived-microRNAs predicting enzalutamide-resistance in 3D spheroid prostate Cancer model.

Int J Biol Macromol

January 2025

Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal. Electronic address:

Enzalutamide (ENZ) has emerged as a major treatment advance in castration-resistant prostate cancer (CRPC) patients; however the development of resistance remains a key challenge. The extracellular vesicles (VEs)-derived miRNAs play crucial roles tumor microenvironment cell communication, thereby influencing resistance mechanisms. Considering the urgent need for molecular biomarkers to monitor ENZ response and predict resistance, we intend to identify an EV-derived miRNA profile associated with ENZ resistance using an innovative 3D-spheroid in vitro model.

View Article and Find Full Text PDF
Article Synopsis
  • - The paper offers an in-depth analysis of biomarkers associated with head and neck cancer (HNC), discussing key proteins and genes that play significant roles in the disease's development and progression.
  • - Important genes linked to HNC progression include AURKA, HMGA2, and others, while specific microRNAs (OncomiRs) are shown to promote tumor growth, with some, like hsa-miR-155-3p, indicating potential for prognosis.
  • - Future research should focus on applying precision medicine and advanced therapies, including AI, to enhance personalized treatment approaches for better patient outcomes in HNC care.
View Article and Find Full Text PDF

Background: Pancreatic cancer (PC) is one of the most aggressive types of cancer. Despite advances in molecular diagnostics, PC diagnosis relies on imaging technologies and morphological assessment of fine needle aspirates (FNAs). MicroRNA (miRNA) involvement in PC pathogenesis and potential diagnostics application have been suggested, albeit current supporting evidence is lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!