Purpose: To assess whether night-time increases in mechanical loading negatively impact respiratory muscle function in COPD and whether compensatory increases in inspiratory neural drive (IND) are adequate to stabilize ventilatory output and arterial oxygen saturation, especially during sleep when wakefulness drive is withdrawn.

Methods: 21 patients with moderate-to-severe COPD and 20 age-/sex-matched healthy controls (CTRL) participated in a prospective, cross-sectional, one-night study to assess the impact of COPD on serial awake, supine inspiratory capacity (IC) measurements and continuous dynamic respiratory muscle function (esophageal manometry) and IND (diaphragm electromyography, EMGdi) in supine sleep.

Results: Supine inspiratory effort and EMGdi were consistently twice as high in COPD versus CTRL (p < 0.05). Despite overnight increases in awake total airways resistance and dynamic lung hyperinflation in COPD (p < 0.05; not in CTRL), elevated awake EMGdi and respiratory effort were unaltered in COPD overnight. At sleep onset (non-rapid eye movement sleep, N2), EMGdi was decreased versus wakefulness in COPD (- 43 ± 36%; p < 0.05) while unaffected in CTRL (p = 0.11); however, respiratory effort and arterial oxygen saturation (SpO) were unchanged. Similarly, in rapid eye movement (stage R), sleep EMGdi was decreased (- 38 ± 32%, p < 0.05) versus wakefulness in COPD, with preserved respiratory effort and minor (2%) reduction in SpO.

Conclusions: Despite progressive mechanical loading overnight and marked decreases in wakefulness drive, inspiratory effort and SpO were well maintained during sleep in COPD. Preserved high inspiratory effort during sleep, despite reduced EMGdi, suggests continued (or increased) efferent activation of extra-diaphragmatic muscles, even in stage R sleep.

Clinical Trial Information: The COPD data reported herein were secondary data (Placebo arm only) obtained through the following Clinical Trial: "Effect of Aclidinium/Formoterol on Nighttime Lung Function and Morning Symptoms in Chronic Obstructive Pulmonary Disease" ( https://clinicaltrials.gov/ct2/show/NCT02429765 ; NCT02429765).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00421-021-04869-0DOI Listing

Publication Analysis

Top Keywords

respiratory muscle
8
muscle function
8
supine inspiratory
8
copd
5
compensatory responses
4
responses increased
4
increased mechanical
4
mechanical abnormalities
4
abnormalities copd
4
copd sleep
4

Similar Publications

Pulmonary arterial hypertension (PAH) is a serious medical condition that causes a failure in the right heart. Two-pore channel 2 (TPC2) is upregulated in PAH, but its roles in PAH remain largely unknown. Our investigation aims at the mechanisms by which TPC2 regulates PAH development.

View Article and Find Full Text PDF

Single-nucleus transcriptomic profiling of the diaphragm during mechanical ventilation.

Sci Rep

December 2024

Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, 110 South Yan'an Road, Luzhou District, Changzhi City, 046012, China.

Mechanical ventilation contributes to diaphragm atrophy and muscle weakness, which is referred to as ventilator-induced diaphragmatic dysfunction (VIDD). The pathogenesis of VIDD has not been fully understood until recently. The aim of this study was to investigate the effects of 24 h of mechanical ventilation on fibro-adipogenic progenitor (FAP) proliferation, endothelial-mesenchymal transition (EndMT), and immune cell infiltration driving diaphragm fibrosis in a rabbit model.

View Article and Find Full Text PDF

Purpose: The present study investigated the effect of unpleasant salty or bitter tastes on cycling sprint performance and knee-extensor force characteristics in different fatigue states.

Methods: Following a familiarization session, 11 trained male cyclists completed 3 experimental trials (salty, bitter, and water) in a randomized crossover order. In each trial, participants cycled at 85% of the respiratory compensation point for 45 minutes and then, after a 5-minute rest, completed a 1-minute sprint.

View Article and Find Full Text PDF

Objective: To analyze the results of nocturnal breathing parameters during sleep based on nocturnal pulse oximetry and to study of characteristics of external respiration in genetically confirmed patients with dystrophic myotonia (DM).

Material And Methods: The subjects of the study were patients with genetically confirmed DM types 1 and 2 who were hospitalized in the neurological departments of the Republican Scientific and Practical Center for Neurology and Neurosurgery. The clinical picture of the disease, comorbidities, sleep questionnaires, laboratory tests, overnight pulse oximetry and spirometry were performed and analyzed.

View Article and Find Full Text PDF

Benefits from Implementing Low- to High-Intensity Inspiratory Muscle Training in Patients Undergoing Cardiac Surgery: A Systematic Review.

J Cardiovasc Dev Dis

November 2024

Clinical Ergospirometry, Exercise and Rehabilitation Laboratory, 1st Critical Care Department, Evangelismos Hospital, School of Medicine, National and Kapodistrian University of Athens, 10675 Athens, Greece.

Cardiac surgery procedures are among the main treatments for people with cardiovascular disease, with physiotherapy playing a vital part. Respiratory complications are common and associated with prolonged Intensive Care Unit (ICU) and hospital stay, as well as increased mortality. Inspiratory muscle training has been found to be beneficial in improving respiratory muscle function in critically ill patients and patients with heart failure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!