Effective connectivity measurements in the human hippocampal memory system based on the resting-state blood oxygenation-level dependent signal were made in 172 participants in the Human Connectome Project to reveal the directionality and strength of the connectivity. A ventral "what" hippocampal stream involves the temporal lobe cortex, perirhinal and parahippocampal TF cortex, and entorhinal cortex. A dorsal "where" hippocampal stream connects parietal cortex with posterior and retrosplenial cingulate cortex, and with parahippocampal TH cortex, which, in turn, project to the presubiculum, which connects to the hippocampus. A third stream involves the orbitofrontal and ventromedial-prefrontal cortex with effective connectivity with the hippocampal, entorhinal, and perirhinal cortex. There is generally stronger forward connectivity to the hippocampus than backward. Thus separate "what," "where," and "reward" streams can converge in the hippocampus, from which back projections return to the sources. However, unlike the simple dual stream hippocampal model, there is a third stream related to reward value; there is some cross-connectivity between these systems before the hippocampus is reached; and the hippocampus has some effective connectivity with earlier stages of processing than the entorhinal cortex and presubiculum. These findings complement diffusion tractography and provide a foundation for new concepts on the operation of the human hippocampal memory system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/cercor/bhab442 | DOI Listing |
Clin Exp Med
January 2025
Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Division of Gastroenterology and Hepatology, 200 1st Street SW, Rochester, MN, 55905, USA.
Background: Celiac disease (CeD) has shown an association with autoimmune disorders including vitiligo and alopecia areata (AA). Ritlecitinib, a JAK3 and TEC kinase family inhibitor, has been approved for treatment of patients with AA and is in late-stage development for vitiligo. Ritlecitinib inhibits cytotoxic T cells, NK cells, and B cells which play a role in the pathogenesis of CeD.
View Article and Find Full Text PDFRheumatol Int
January 2025
School of Medicine, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
This study aims to review the literature and estimate the global pooled prevalence of interstitial lung disease among patients with rheumatoid arthritis (RA-ILD). The influence of risk factors like geography, socioeconomic status, smoking and DMARD use will be explored. A systematic review was performed according to the PRISMA and JBI guidelines.
View Article and Find Full Text PDFALTEX
January 2025
Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium.
The gut microbiota is unanimously acknowledged as playing a central role in human health, notably through the production of various metabolites, including short-chain fatty acids, secondary bile acids, vitamins or neurotransmitters. Beyond contributing to gut health itself, these microbial metabolites significantly impact multiple organ systems by participating in key signaling pathways along the well documented gut-organ axes. Chemicals ingested through food might interact with our gut microbiota, altering metabolites production with consequences on health.
View Article and Find Full Text PDFXenotransplantation
January 2025
Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Advancements in xenotransplantation intersecting with modern machine perfusion technology offer promising solutions to patients with liver failure providing a valuable bridge to transplantation and extending graft viability beyond current limitations. Patients facing acute or acute chronic liver failure, post-hepatectomy liver failure, or fulminant hepatic failure often require urgent liver transplants which are severely limited by organ shortage, emphasizing the importance of effective bridging approaches. Machine perfusion is now increasingly used to test and use genetically engineered porcine livers in translational studies, addressing the limitations and costs of non-human primate models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!