Norzoanthamine (NZ), an alkaloid that has been isolated from the marine cnidiaria Zoanthus sp., has been shown an interesting anti-osteoporotic activity. Although its mechanism of action is not yet clear, it seems that it is different from those of currently used drugs making it particularly interesting. Previous studies have been carried out mostly in vitro. Herein, we present an in vivo study that allows to check the real potential of NZ as a protector substance by direct application into ovariectomized rat bone using a sustained delivery system. Histological and histomorphometric results in ovariectomized rats showed higher bone quality as a result of greater number of trabeculae and osteogenic activity in the group implanted with NZ, compared to controls. In contrast with the untreated controls, NZ-treated groups showed a balanced osteoblast/osteoclast number ratio, similar to that found in the normal bone. These results suggest that NZ could be useful as adjunct to other osteoporosis treatments, but probably its main therapeutic role would be as preventive therapy against bone deterioration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2022.112631 | DOI Listing |
Comb Chem High Throughput Screen
January 2025
Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, China.
Background: Postmenopausal Osteoporosis (PMOP) is characterized by decreased bone mass and deterioration of bone microarchitecture, leading to increased fracture risk. Current treatments often have adverse effects, necessitating safer alternatives. Kaempferol, a flavonoid identified as a key active component of the traditional Chinese medicine Yishen Gushu formula, has shown promise in improving bone health, but its mechanisms in PMOP treatment remain unclear.
View Article and Find Full Text PDFElife
January 2025
Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China.
Estrogen significantly impacts women's health, and postmenopausal hypertension is a common issue characterized by blood pressure fluctuations. Current control strategies for this condition are limited in efficacy, necessitating further research into the underlying mechanisms. Although metabolomics has been applied to study various diseases, its use in understanding postmenopausal hypertension is scarce.
View Article and Find Full Text PDFChem Pharm Bull (Tokyo)
January 2025
Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd.
Osteoporosis is caused by an imbalance between bone resorption and formation, which decreases bone mass and strength and increases the risk of fracture. Therefore, osteoporosis is treated with oral resorption inhibitors, such as bisphosphonates, and parenteral osteogenic drugs, including parathyroid hormone and antisclerostin antibodies. However, orally active osteogenic drugs have not yet been developed.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Physiological Sciences, Interinstitutional Post-Graduate Program of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos 13.566-490, SP, Brazil.
Menopause occurs due to the depletion of the ovarian reserve, leading to a progressive decline in estrogen (E2) levels. This decrease in E2 levels increases the risk of developing several diseases and can coexist with chronic kidney disease (CKD). Arterial hypertension (AH) is another condition associated with menopause and may either contribute to or result from CKD.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Orthopedic Surgery, Sports Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
Osteoporosis (OP) is a chronic inflammatory bone disease characterized by reduced bone structure and strength, leading to increased fracture risk. Effective therapies targeting both bone and cartilage are limited. This study compared the therapeutic effects of extracorporeal shockwave therapy (ESWT), bisphosphonate (Aclasta), and human Wharton jelly-derived mesenchymal stem cells (WJMSCs) in a rat model of OP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!