Identifiable universal fluorescent multiplex PCR equipped with capillary electrophoresis for genotyping of exons 1 to 5 in human red and green pigment genes.

Talanta

School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, ROC; Drug Development and Value Creation Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, ROC. Electronic address:

Published: May 2022

Congenital red and green color blindness is the most X-linked recessive disorder in humans caused by deletions or gross structural rearrangements of the visual pigment gene array that lead to altered the functions of visual pigments in their retina differ from normal. The incidence is about 7-10% in male and close association of X-linked recessive disorders (such as: hemophilia A, hemophilia B, duchenne muscular dystrophy). However, the traditional genetic analysis methods are time-consuming and low-efficiencies. Therefore, the purpose of the study is to develop a rapid method for genotyping of red and green pigment genes. We describe herein the first method for simultaneous evaluation of ten exons in the red and green pigment genes for genetic analysis. A forward specific primers with identifiable universal fluorescent multiplex PCR (FSIUFM-PCR) method utilized one universal primer (containing two universal non-human sequences) and forward specific primers in the multiplex PCR reaction system for simultaneously fluorescent labeling of eleven gene fragments (ten exons in red and green pigment genes and one internal standard). All the PCR products were analyzed on capillary electrophoresis with short-end injection, which had the advantage of high resolution and rapid separation. Of all 80 detected individuals, 7 subjects with color vision deficiencies (including 3 subjects only had red exons 1-5, 4 subjects had a specific red-green or green-red hybrid gene and 73 subjects with normal color vision). All genotyping results showed good agreement with DNA sequencing data. This method provided a better potential technique for genotyping and identifying of red and green pigment genes. In addition, FSIUFM-PCR method will be useful in many fields, such as diagnosis of diseases, analysis of polymorphisms and quantitative assay.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2021.123199DOI Listing

Publication Analysis

Top Keywords

red green
24
green pigment
20
pigment genes
20
multiplex pcr
12
identifiable universal
8
universal fluorescent
8
fluorescent multiplex
8
capillary electrophoresis
8
x-linked recessive
8
genetic analysis
8

Similar Publications

The current research was conducted to synthesize Parietaria alsinifolia-mediated iron oxide nanoparticles (P.A@FeONPs) using the green and eco-friendly protocol. The biosynthesized P.

View Article and Find Full Text PDF

[Exploring the mechanism of HIV infection on T lymphocyte mitochondrial damage based on MAPK pathway].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

December 2024

Department of Infection and Immunology, Changsha First Hospital, Changsha 410005, China.

Objective To clarify the mechanism that HIV infection mediates mitochondrial damage of CD4 T lymphocytes (CD4 T cells) through mitogen-activated protein kinase (MAPK) pathway. Methods From October 1st, 2022 to March 31st, 2023, 47 HIV-infected people who received antiretroviral therapy (ART) for 4 years were recruited, including 22 immune non-responders (INR) and 25 responders (IR); and 26 sex and age-matched control participants (HC) who were negative for HCV, HBV, and HIV infections. The immune parameters were analyzed by flow cytometry.

View Article and Find Full Text PDF

Endurable IGZO/SnS/IGZO Heterojunction Phototransistor Arrays for Image Sensors.

ACS Appl Mater Interfaces

January 2025

School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.

Optoelectronic devices require stable operation to detect repetitive visual information. In this study, endurable arrays based on heterojunction phototransistors composed of indium-gallium-zinc oxide (IGZO) with a low dark current and tin sulfide (SnS) capable of absorbing visible light are developed for image sensors. The tandem structure of IGZO/SnS/IGZO (ISI) enables stable operation under repetitive exposure to visible light by improving the transport ability of the photoexcited carriers through mitigated trap sites and their separation into each IGZO layer.

View Article and Find Full Text PDF

Isolation and screening of wood-decaying fungi for lignocellulolytic enzyme production and bioremediation processes.

Front Fungal Biol

December 2024

Water Systems and Biotechnology Institute, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia.

The growing demand for novel enzyme producers to meet industrial and environmental needs has driven interest in lignocellulose-degrading fungi. In this study, lignocellulolytic enzyme production capabilities of environmental fungal isolates collected from boreal coniferous and nemoral summer green deciduous forests were investigated, using Congo Red, ABTS, and Azure B as indicators of cellulolytic and ligninolytic enzyme productions. Through qualitative and quantitative assays, the study aimed to identify promising species for lignocellulose-degrading enzyme secretion and assess their potential for biotechnological applications.

View Article and Find Full Text PDF

Purpose: This study presents a novel randomized controlled trial investigating photobiomodulation (PBM) therapy as an intervention method for color vision deficiency (CVD).

Methods: A total of 74 participants with CVD were assigned to either the PBM group or the control group. In the PBM group, participants wore virtual reality (VR) goggles twice daily, with a 12-h interval, over a four-week period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!