Water binding to the atmospheric oxidation product methyl vinyl ketone.

Spectrochim Acta A Mol Biomol Spectrosc

Departamento de Química Física y Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo de Belén 7, Valladolid 47011, Spain. Electronic address:

Published: April 2022

Methyl vinyl ketone is one of the major oxidation products of isoprene, and therefore, an important precursor of secondary organic aerosol. Understanding its interactions with water is relevant to gain insight into aerosol formation and improve the predictive power of atmospheric chemistry models. The molecular complex formed between methyl vinyl ketone and water has been generated in a supersonic jet and characterized using high-resolution microwave spectroscopy in combination with quantum chemistry calculations. In this study, we show that methyl vinyl ketone interacts with water forming four 1:1 isomers connected by O - H···O and C - H···O hydrogen bond interactions. Water has been found to preferentially bind to the antiperiplanar conformation of methyl vinyl ketone. Evidence of a large amplitude motion arising from the methyl internal rotation has been found in the rotational spectra of the dimer. The threefold methyl internal rotation barrier heights have been further determined and discussed for all the species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2021.120846DOI Listing

Publication Analysis

Top Keywords

methyl vinyl
20
vinyl ketone
20
interactions water
8
methyl internal
8
internal rotation
8
methyl
7
water
5
vinyl
5
ketone
5
water binding
4

Similar Publications

Methyl Gallate and Amoxicillin-Loaded Electrospun Poly(vinyl alcohol)/Chitosan Mats: Impact of Acetic Acid on Their Anti- Activity.

Polymers (Basel)

December 2024

Materials Technology Program, School of Energy, Environment and Materials, King Mongkut's University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mod, Bangkok 10140, Thailand.

Methyl gallate (MG), a natural phenolic compound, exhibits in vitro synergistic activity with amoxicillin (Amox) against methicillin-resistant (MRSA), a global health concern. This study developed electrospun nanofibers incorporating MG and Amox into a poly(vinyl alcohol) (PVA)/chitosan (CS) blend to target both methicillin-susceptible (MSSA) and MRSA. The formulation was optimized, and the impact of acetic acid on antibacterial activity was evaluated using agar disc diffusion.

View Article and Find Full Text PDF

A Hoveyda-Grubbs (HG)-type olefin metathesis complex with a selenoether moiety at the terminus of phenoxy moiety was synthesized. The complex showed direct selenium-atom coordination to the ruthenium center, resulting in higher thermodynamic stability compared with the parent HG catalyst. The selenium atom binding enhanced the tolerance to protic solvent molecules in ring-closing metathesis of -tosyldiallylamide and diethyl diallylmalonate, and also in the cross metathesis between 3-butenylbenzoate and methyl acrylate.

View Article and Find Full Text PDF

The aim of the present study was to demonstrate the phytochemical characterisation, antioxidant and antimicrobial properties of methanol extracts of leaf parts of . The Phytochemical characterisation by GC-MS analysis revealed the presence of 30 phytoconstituents such as Methyl commate A (14.69%), Phytol (13.

View Article and Find Full Text PDF

On the Role of a Polymer Matrix in Enhancing Energy Transfer Efficiency Using Coumarin 6 and Rhodamine B as Donor and Acceptor Pairs.

Chem Asian J

January 2025

Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Av. Rector Eduardo Morales 33, Valdivia, Chile.

This study investigates the critical role of polymer matrices in optimizing luminescence and energy transfer, utilizing the commercial dyes Coumarin 6 (C6) and Rhodamine B (RhB) as a donor-acceptor pair. Solution-phase experiments revealed a dependence of energy transfer efficiency on solvent dielectric constant. Furthermore, embedding the dyes within Poly(methyl methacrylate) (PMMA) or Poly(vinyl butyral) (PVB) matrices significantly enhance energy transfer due to increased molecular proximity.

View Article and Find Full Text PDF

Rhodium(III) catalysis has been used for C-H activation of -nitrosoanilines with substituted allyl alcohols. This method provides an efficient synthesis of the functional -nitroso β-aryl aldehydes and ketones with low catalyst loading, high functional group tolerance, and superior reactivity of allyl alcohols toward -nitrosoanilines. We demonstrated that reaction also proceeds through the one-pot synthesis of -nitrosoaniline, followed by subsequent, C-H activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!