Hypothesis: The conditions to allow self-assembly of cellulose nanocrystal (CNC) suspensions into chiral nematic structures are based on aspect ratio, surface charge density and a balance between repulsive and attractive forces between CNC particles.
Experiments: Three types of systems were characterized in suspensions and subsequently in their solid dried films: 1) neat water dialyzed CNC, 2) CNC combined with polyethylene glycol(PEG) (CNC/PEG), and 3) CNC with added salt (CNC/Salt). All suspensions were characterized by polarized optical microscope (POM) and small angle X-ray scattering (SAXS), while the resultant dried films were analyzed by reflectance spectrometer, scanning electron microscope (SEM) and SAXS.
Findings: The presence of chiral nematic (CN*) structures was not observed in dialyzed aqueous suspensions of CNC during water evaporation. By introducing salts or a non-adsorbing polymer, chirality was apparent in both suspensions and films. The interaxial angle between CNC rods increased when the suspensions of CNC/PEG and CNC/salt were dried to solid films. The angle was found to be dependent on both species of ions and ionic strength, while the inter-particle distance was only related to the salt concentration, as explained in terms of interaction energies. The CNC suspensions/film chirality can be modulated by controlling the colloidal forces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2021.12.182 | DOI Listing |
Int J Biol Macromol
January 2025
State Key Laboratory of Chemical Engineering, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China. Electronic address:
Branched poly (butylene succinate-co-butylene terephthalate) (BPBST) was synthesized by in-situ polycondensation to enhance the foamability of poly (butylene succinate-co-butylene terephthalate) (PBST) and was blended with cellulose nanocrystals (CNC) to address foam shrinkage. The introduction of 2 wt% CNC increased the crystallization temperature of BPBST from 66.6 °C to 87.
View Article and Find Full Text PDFDalton Trans
January 2025
Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia.
A series of cyclometalated Au(III) complexes [Au(C^N^C)(C-L-P(O)Ph)] with C^N^C = 2,6-diphenylpyridine and alkynylphosphine oxide ligands (L = no linker, Au1; phenyl, Au2; biphenyl, Au3; naphthyl, Au4; anthracenyl, Au5) were synthesized and fully characterized by spectroscopic methods and single crystal XRD analysis. The complexes obtained exhibit triplet (Au1-Au3) and dual (Au4, Au5) emissions in solution, in the solid phase and in the PMMA film, whose characteristics depend on the linker's nature of the alkynylphosphine oxide ligand. The description of electronic transitions responsible for energy absorption and emission in Au(III) complexes was made on the basis of a detailed analysis of the results of DFT calculations and has shown to involve ILCT, LLCT and MLCT transitions of singlet and triplet nature.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada. Electronic address:
This study explores the effect of sucrose addition on the properties of chiral nematic cellulose nanocrystal (CNC) films for potential food industry applications, including biodegradable packaging and food coloring. The addition of sucrose altered the films' structural color, shifting from blue in pure CNC films to aqua blue, green, yellow-green, and red with increasing sucrose concentrations (up to 21 %). Surface analysis revealed a reduction in contact angle from 96° to 48° due to sucrose's hydrophilic nature and smoother film surfaces.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, PR China. Electronic address:
Utilizing cellulose nanocrystals (CNCs) to mimic biological skin capable of converting external stimuli into optical and electrical signals represents a significant advancement in the development of advanced photonic materials. However, traditional CNC photonic materials typically exhibit static and singular optical properties, with their structural color and mechanical performance being susceptible to water molecules, thereby limiting their practical applications. In this study, CNC-based conductive elastomers with dynamic mechanochromism, fluorescence responsiveness, and enhanced water resistance were developed by incorporating carbon quantum dots (C QDs) and hydrophobic deep eutectic solvents (HDES) into CNC photonic films via an in-situ swelling-photopolymerization method.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Intelligent Manufacturing Laboratory, Production Engineering Institute, Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia.
Direct verification of the geometric accuracy of machined parts cannot be performed simultaneously with active machining operations, as it usually requires subsequent inspection with measuring devices such as coordinate measuring machines (CMMs) or optical 3D scanners. This sequential approach increases production time and costs. In this study, we propose a novel indirect measurement method that utilizes motor current data from the controller of a Computer Numerical Control (CNC) machine in combination with machine learning algorithms to predict the geometric accuracy of machined parts in real-time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!